• Title/Summary/Keyword: Interpolation Parameter

Search Result 151, Processing Time 0.028 seconds

Interpolation Technique to Improve the Accuracy of RR-interval in Portable ECG Device (휴대형 심전계 장치의 RR 간격의 정확도 개선을 위한 보간법 개발)

  • Lee, Eun-Mi;Hong, Joo-Hyun;Cha, Eun-Jong;Lee, Tae-Soo
    • Journal of Biomedical Engineering Research
    • /
    • v.31 no.4
    • /
    • pp.316-320
    • /
    • 2010
  • HRV(Heart rate variability) analysis parameter is widely used as an index to evaluate the autonomic nervous system and cardiac function. For reliable HRV analysis, we need to acquire the accurate ECG signals. Most of commercially available portable ECG devices have low sampling rate because of low power consumption and small size issues, which make it difficult to measure RR-interval accurately. This study is to improve the accuracy of RR-interval by developing R-wave interpolation technique, based on the morphological characteristics of the QRS complex. When the developed method was applied to ECG obtained at 200 Hz and the results were compared with 1000 Hz reference device, the error range decreased by 1.33 times in sitting and by 2.38 times in cycling exercise. Therefore, the proposed interpolation technique is thought to be useful to improve the accuracy of R-R interval in the portable ECG device with low sampling rate.

A Study Personal 2D Color Feature Image Interpolation

  • Jo, Nam-Chul;Ku, Ja-Hyo;Kim, Hwi-Won;Lee, Ki-Dong
    • 한국정보컨버전스학회:학술대회논문집
    • /
    • 2008.06a
    • /
    • pp.177-180
    • /
    • 2008
  • Surveillance Cameras such as CCTV easily found in places requiring security and the prevention of crimes such as public institutions, banks, etc. play an important role as they prevent all sorts of crimes, and provide a decisive clue fix settling a criminal case. But, in case that a far-off person is photographed, an original image should be enlarged to identify the person. And as for the technique of enlarging an image, it is important to enlarge and restore it close to its original image rather than to merely magnify it. For the enlargement and restoration of an image, techniques called interpolation are used; as for interpolation methods known hitherto, however, the higher the magnifying power is, the more deteriorated the quality of an image becomes to the extent that the image cannot be identified. Therefore, in this paper, we are going to propose a new technique whereby the face outline in an image is vectorized and restored by means of FDP(Facial Definition Parameter) standardized by the MPEG-4 SNHC FBA group, and an image is restored to have better quality than images restored with the existing interpolation.

  • PDF

Extraction of a Distance Parameter in Optical Scanning Holography Using Axis Transformation

  • Kim, Tae-Geun;Kim, You-Seok
    • Journal of the Optical Society of Korea
    • /
    • v.14 no.2
    • /
    • pp.104-108
    • /
    • 2010
  • We proposed an axis transformation technique which reveals a distance parameter directly from optical scanning holography (OSH). After synthesis of a real-only spectrum hologram and power fringe adjusted filtering, we transform an original frequency axis to a new frequency axis using interpolation. In the new frequency axis, the filtered hologram has a single frequency which is linearly proportional to the distance parameter. Thus, the inverse Fourier transformation of the filtered hologram gives a delta function pair in the new spatial axis. Finally, we extract the distance parameter by detecting the location of the delta function pair.

Parameter Estimation of VfloTM Distributed Rainfall-Runoff Model by Areal Rainfall Calculation Methods - For Dongchon Watershed of Geumho River - (유역 공간 강우 산정방법에 따른 VfloTM 분포형 강우-유출 모형의 매개변수 평가 - 금호강 동촌 유역을 대상으로 -)

  • Kim, Si Soo;Jung, Chung Gil;Park, Jong Yoon;Jung, Sung Won;Kim, Seong Joon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.55 no.1
    • /
    • pp.9-15
    • /
    • 2013
  • This study is to evaluate the parameter behavior of VfloTM distributed rainfall-runoff model by applying 3 kinds of rainfall interpolation methods viz. Inverse Distance Weighting (IDW), Kriging (KRI), and Thiessen network (THI). For the 1,544 $km^2$ Dongcheon watershed of Nakdong river, the model was calibrated using 4 storm events in 2007 and 2009, and validated using 2 storm events in 2010. The model was calibrated with Nash-Sutcliffe model efficiency of 0.97 for IDW, 0.94 for KRI, and 0.95 for THI respectively. For the sensitive parameters, the saturated hydraulic conductivity ($K_{sat}$) for IDW, KRI, and THI were 0.33, 0.31, and 0.43 cm/hr, and the soil suction head at the wetting front (${\Psi}_f$) were 4.10, 3.96, and 5.19 cm $H_2O$ respectively. These parameters affected the infiltration process by the spatial distribution of antecedent moisture condition before a storm.

A mathematical model to recover missing monitoring data of foundation pit

  • Liu, Jiangang;Zhou, Dongdong;Liu, Kewen
    • Geomechanics and Engineering
    • /
    • v.9 no.3
    • /
    • pp.275-286
    • /
    • 2015
  • A new method is presented to recover missing deformation data of lateral walls of foundation pit when the monitoring is interrupted; the method is called Dynamic Mathematical Model - Parameter Interpolation. The deformation of lateral walls of foundation pit is mainly affected by the type of supporting structure and the situation of constraints, therefore, this paper mainly studies the two different kinds of variation law of deep horizontal displacement when the lateral walls are constrained or not, proposes two dynamic curve models of normal distribution type and logarithmic type, deals with model parameters by interpolating and obtains the parameters of missing data, then missing monitoring data could be Figured out by these parameters. Compared with the result from the common average method which is used to recover missing data, in the upper 2/3 of the inclinometer tube, the result by using this method is closer to the actual monitoring data, in the lower 1/3 part of the inclinometer tube, the result from the common average method is closer to the actual monitoring data.

Ensemble Daily Streamflow Forecast Using Two-step Daily Precipitation Interpolation (일강우 내삽을 이용한 일유량 시뮬레이션 및 앙상블 유량 발생)

  • Hwang, Yeon-Sang;Heo, Jun-Haeng;Jung, Young-Hun
    • Journal of Korea Water Resources Association
    • /
    • v.44 no.3
    • /
    • pp.209-220
    • /
    • 2011
  • Input uncertainty is one of the major sources of uncertainty in hydrologic modeling. In this paper, first, three alternate rainfall inputs generated by different interpolation schemes were used to see the impact on a distributed watershed model. Later, the residuals of precipitation interpolations were tested as a source of ensemble streamflow generation in two river basins in the U.S. Using the Monte Carlo parameter search, the relationship between input and parameter uncertainty was also categorized to see sensitivity of the parameters to input differences. This analysis is useful not only to find the parameters that need more attention but also to transfer parameters calibrated for station measurement to the simulation using different inputs such as downscaled data from weather generator outputs. Input ensembles that preserves local statistical characteristics are used to generate streamflow ensembles hindcast, and showed that the ensemble sets are capturing the observed steamflow properly. This procedure is especially important to consider input uncertainties in the simulation of streamflow forecast.

Low-power VLSI Architecture Design for Image Scaler and Coefficients Optimization (영상 스케일러의 저전력 VLSI 구조 설계 및 계수 최적화)

  • Han, Jae-Young;Lee, Seong-Won
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.47 no.6
    • /
    • pp.22-34
    • /
    • 2010
  • Existing image scalers generally adopt simple interpolation methods such as bilinear method to take cost-benefit, or highly complex architectures to achieve high quality resulting images. However, demands for a low power, low cost, and high performance image scaler become more important because of emerging high quality mobile contents. In this paper we propose the novel low power hardware architecture for a high quality raster scan image scaler. The proposed scaler architecture enhances the existing cubic interpolation look-up table architecture by reducing and optimizing memory access and hardware components. The input data buffer of existing image scaler is replaced with line memories to reduce the number of memory access that is critical to power consumption. The cubic interpolation formula used in existing look-up table architecture is also rearranged to reduce the number of the multipliers and look-up table size. Finally we analyze the optimized parameter sets of look-up table, which is a trade-off between quality of result image and hardware size.

An Image Interpolation by Adaptive Parametric Cubic Convolution (3차 회선 보간법에 적응적 매개변수를 적용한 영상 보간)

  • Yoo, Jea-Wook;Park, Dae-Hyun;Kim, Yoon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.13 no.6
    • /
    • pp.163-171
    • /
    • 2008
  • In this paper, we present an adaptive parametric cubic convolution technique in order to enlarge the low resolution image to the high resolution image. The proposed method consists of two steps. During the first interpolation step, we acquire adaptive parameters in introducing a new cost-function to reflect frequency properties. And, the second interpolation step performs cubic convolution by applying the parameters obtained from the first step. The enhanced interpolation kernel using adaptive parameters produces output image better than the conventional one using a fixed parameter. Experimental results show that the proposed method can not only provides the performances of $0.5{\sim}4dB$ improvements in terms of PSNR, but also exhibit better edge preservation ability and original image similarity than conventional methods in the enlarged images.

  • PDF

Expectation of Bead Shape using Non-linear Multiple Regression and Piecewise Cubic Hermite Interpolation in FCA Fillet Pipe Welding (FCA 필릿 파이프 용접에서 다중 비선형 회귀 모형과 구간적 3차 에르미트 보간법을 통한 비드 형상 예측)

  • Cho, Dae-Won;Na, Suck-Joo;Lee, Mok-Young
    • Journal of Welding and Joining
    • /
    • v.27 no.5
    • /
    • pp.42-48
    • /
    • 2009
  • Pipe welding is used in various ranges such as civil engineering and ship building engineering. Until now, many technicians work for pipe welding manually under harmful, dangerous and difficult conditions. So it is necessary to install automation process. For automation pipe welding, relation between welding parameters & bead shape should be considered. Using this relation, bead shape could be expected from welding parameters. FCAW was used in this study. Instead of pipe workpiece, fillet joint plate is used, which were inclined 0,45,90,135,180 degree. By analyzing between welding parameters (current, welding speed, voltage) and bead shape parameters with non-linear multiple regression, bead shape parameters could be expected. Piecewise Cubic Hermite Interpolation was used to expect smooth curved bead shape with bead shape parameters. From these processes, bead shape could be expected from welding parameters.