• Title/Summary/Keyword: Interpolation Parameter

Search Result 149, Processing Time 0.026 seconds

An interpolation method of b-spline surface for hull form design

  • Jung, Hyung-Bae
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.2 no.4
    • /
    • pp.195-199
    • /
    • 2010
  • This paper addresses the problem of B-spline surface interpolation of scattered points for a hull form design, which are not arbitrarily scattered, but can be arranged in a series of contours permitting variable number of points in the contours. A new approach that allows different parameter value for each point on the same contour has been adopted. The usefulness and quality of the interpolation has been demonstrated with some experimental results.

Design of a Sliding Mode Controller with Nonlinear Boundary Transfer Characteristics

  • Kim, Yoo K.;Gi J. Jeon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.164.2-164
    • /
    • 2001
  • Sliding mode control (SMC) with variable nonlinear boundary layer is proposed. Two Fuzzy logic controllers (FLCs) are used to decide both boundary layer thickness and nonlinear interpolation using sigmoid function in the boundary layer. The nonlinear interpolation in the boundary layer suing FLC reduces stead state error and chattering. Sigmoid function is used to nonlinear interpolation in the boundary layer sigmoid function parameter with FLC. To demonstrate its performance, the Proposed control algorithm is applied to a simple nonlinear system.

  • PDF

An Adaptive Cubic Interpolation considering Neighbor Pixel Values (이웃 픽셀 값을 고려한 적응적 3차 보간법)

  • Lee, A-Yeong;Kim, Hee-Chang;Jeong, Je-Chang
    • Journal of Broadcast Engineering
    • /
    • v.15 no.3
    • /
    • pp.362-367
    • /
    • 2010
  • As the resolution of the image display devices has been diversified, the image interpolation methods has played a more important role. The cubic convolution interpolation method has been widely used because it is simple but it has no limitation of using and a good performance. This paper suggests an adaptive method to the cubic convolution interpolation. Considering the difference of the neighbored pixels values to a prediction pixel, a parameter value in the cubic convolution interpolation kernel is chosen.

PREDICTION OF UNMEASURED PET DATA USING SPATIAL INTERPOLATION METHODS IN AGRICULTURAL REGION

  • Ju-Young;Krishinamurshy Ganeshi
    • Water Engineering Research
    • /
    • v.5 no.3
    • /
    • pp.123-131
    • /
    • 2004
  • This paper describes the use of spatial interpolation for estimating seasonal crop potential evapotranspiration (PET) and irrigation water requirement in unmeasured evaporation gage stations within Edwards Aquifer, Texas using GIS. The Edwards Aquifer area has insufficient data with short observed records and rare gage stations, then, the investigation of data for determining of irrigation water requirement is difficult. This research shows that spatial interpolation techniques can be used for creating more accurate PET data in unmeasured region, because PET data are important parameter to estimate irrigation water requirement. Recently, many researchers are investigating intensively these techniques based upon mathematical and statistical theories. Especially, three techniques have well been used: Inverse Distance Weighting (IDW), spline, and kriging (simple, ordinary and universal). In conclusion, the result of this study (Table 1) shows the kriging interpolation technique is found to be the best method for prediction of unmeasured PET in Edwards aquifer, Texas.

  • PDF

A Study on the Application of Combined Interpolation and Terrain Classification in Digital Terrain Model (수치지형모형에 있어 지형의 분석과 조합보관법의 적용에 관한 연구)

  • Yeu, Bock-Mo;Park, Woon-Yong;Kwon, Hyon;Mun, Du-Yeoul
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.8 no.2
    • /
    • pp.53-61
    • /
    • 1990
  • In this study, terrain classification was done by using the quantitative classification parameter and suitable interpolation method was applied to improve the accuracy of digital terrain models and to increase its practical applications. A study area was classified into three groups using the quantitative classification parameters and an interpolation equation suitable for each group was used for economical application of the interpolation method. The accuracy of digital terrain models was improved in case of large grid intervals by applying combined interpolation method suitable for each terrain group.

  • PDF

An adaptive meshfree RPIM with improved shape parameter to simulate the mixing of a thermoviscoplastic material

  • Zouhair Saffah;Mohammed Amdi;Abdelaziz Timesli;Badr Abou El Majd;Hassane Lahmam
    • Structural Engineering and Mechanics
    • /
    • v.88 no.3
    • /
    • pp.239-249
    • /
    • 2023
  • The Radial Point Interpolation Method (RPIM) has been proposed to overcome the difficulties associated with the use of the Radial Basis Functions (RBFs). The RPIM has the following properties: Simple implementation in terms of boundary conditions as in the Finite Element Method (FEM). A less expensive CPU time compared to other collocation meshless methods such as the Moving Least Square (MLS) collocation method. In this work, we propose an adaptive high-order numerical algorithm based on RPIM to simulate the thermoviscoplastic behavior of a material mixing observed in the Friction Stir Welding (FSW) process. The proposed adaptive meshfree RPIM algorithm adapts well to the geometric and physical data by choosing a good shape parameter with a good precision. Our numerical approach combines the RPIM and the Asymptotic Numerical Method (ANM). A numerical procedure is also proposed in this work to automatically determine an improved shape parameter for the RBFs. The efficiency of the proposed algorithm is analyzed in comparison with an iterative algorithm.

Linear Interpolation Transition of Character Animation for Immediate 3D Response to User Motion

  • Lim, Sooyeon
    • International Journal of Contents
    • /
    • v.11 no.1
    • /
    • pp.15-20
    • /
    • 2015
  • The purpose of this research is to study methods for performing transition that have visual representation of corresponding animations with no bounce in subsequently recognized user information when attempting to interact with a virtual 3D character in real-time using user motion. If the transitions of the animation are needed owing to a variety of external environments, continuous recognition of user information is required to correspond to the motion. The proposed method includes linear interpolation of the transition using cross-fades and blending techniques. The normalized playing time of the source animation was utilized for automatically calculating the transition interpolation length of the target animation and also as the criteria in selecting the crossfades and blending techniques. In particular, in the case of blending, the weighting value based on the degree of similarity between two animations is used as a blending parameter. Accordingly, transitions for visually excellent animation are performed on interactive holographic projection systems.

A Study Vector Image Transformation of Personal Feature And Image Interpolation (2차원 얼굴외곽 정보의 VECTOR IMAGE 변환과 효과적인 영상복원에 관한 연구)

  • Jo, Nam-Chul
    • Journal of the Korea society of information convergence
    • /
    • v.1 no.1
    • /
    • pp.17-24
    • /
    • 2008
  • Video camera play very important roles for preventing many kinds of crimes and resolving those crime affairs. But in the case of recording image of a specific person far from the CCTV, the original image needs to be enlarged and recovered in order to identify the person more obviously. Interpolation is usually used for the enlargement and recovery of the image in this case. However, it has a certain limitation. As the magnification of enlargement is getting bigger, the quality of the original image can be worse. This paper uses FOP(Facial Definition Parameter) proposed by the MPEG-4 SNHC FBA group and introduces a new algorithm that uses face outline information of the original image based on the FOP, which makes it possible to recover better than the known methods until now.

  • PDF

Comparison of parameter estimation methods for time series models in the presence of outliers

  • 조신섭;이재준;김수화
    • The Korean Journal of Applied Statistics
    • /
    • v.5 no.2
    • /
    • pp.255-268
    • /
    • 1992
  • We propose an iterated interpolation approach for the estimation fo time series parameters in the presence of outliers. The proposed approach iterates the parameter estimation stage and the outlier detection stage until no further outliers are detected. For the detection of outliers, interpolation diagnostic is applied, where the atypical observations by the one-step-ahead predictor instead of downweighting is also proposed. The performance of the proposed estimation methods is compared with other robust estimation methods by simulation study. It is observed that the iterated interpolation approach performs reasonably well is general, especially for single AO case and large $\phi$ in absolute values.

  • PDF

Dynamic Thermal Rating of Transmission Line Based on Environmental Parameter Estimation

  • Sun, Zidan;Yan, Zhijie;Liang, Likai;Wei, Ran;Wang, Wei
    • Journal of Information Processing Systems
    • /
    • v.15 no.2
    • /
    • pp.386-398
    • /
    • 2019
  • The transmission capacity of transmission lines is affected by environmental parameters such as ambient temperature, wind speed, wind direction and so on. The environmental parameters can be measured by the installed measuring devices. However, it is impossible to install the environmental measuring devices throughout the line, especially considering economic cost of power grid. Taking into account the limited number of measuring devices and the distribution characteristics of environment parameters and transmission lines, this paper first studies the environmental parameter estimating method of inverse distance weighted interpolation and ordinary Kriging interpolation. Dynamic thermal rating of transmission lines based on IEEE standard and CIGRE standard thermal equivalent equation is researched and the key parameters that affect the load capacity of overhead lines is identified. Finally, the distributed thermal rating of transmission line is realized by using the data obtained from China meteorological data network. The cost of the environmental measurement device is reduced, and the accuracy of dynamic rating is improved.