• 제목/요약/키워드: Interpolation Function

검색결과 500건 처리시간 0.033초

Lagrange 승산자 방법을 이용한$H^{\infty}$최적제어 ($H^{\infty}$ Optomal Control Using the Lagrange Multiplier Method)

  • 전재완;윤한오;박홍배;김수중
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1991년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 22-24 Oct. 1991
    • /
    • pp.40-45
    • /
    • 1991
  • This paper deals with the design of feedback controllers which minimize the $H^{\infty}$-norm of the weighted sensitivity function. Using the Lagrange multiplier method and the Nevanlinna-Pick interpolation theory, an algorithm which stabilizes a plant and makes the output to track the reference signal is proposed..

  • PDF

A simple method to compute a periodic solution of the Poisson equation with no boundary conditions

  • Moon Byung Doo;Lee Jang Soo;Lee Dong Young;Kwon Kee-Choon
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제5권4호
    • /
    • pp.286-290
    • /
    • 2005
  • We consider the poisson equation where the functions involved are periodic including the solution function. Let $R=[0,1]{\times}[0,l]{\times}[0,1]$ be the region of interest and let $\phi$(x,y,z) be an arbitrary periodic function defined in the region R such that $\phi$(x,y,z) satisfies $\phi$(x+1, y, z)=$\phi$(x, y+1, z)=$\phi$(x, y, z+1)=$\phi$(x,y,z) for all x,y,z. We describe a very simple method for solving the equation ${\nabla}^2u(x, y, z)$ = $\phi$(x, y, z) based on the cubic spline interpolation of u(x, y, z); using the requirement that each interval [0,1] is a multiple of the period in the corresponding coordinates, the Laplacian operator applied to the cubic spline interpolation of u(x, y, z) can be replaced by a square matrix. The solution can then be computed simply by multiplying $\phi$(x, y, z) by the inverse of this matrix. A description on how the storage of nearly a Giga byte for $20{\times}20{\times}20$ nodes, equivalent to a $8000{\times}8000$ matrix is handled by using the fuzzy rule table method and a description on how the shape preserving property of the Laplacian operator will be affected by this approximation are included.

A radial point interpolation method for 1D contaminant transport modelling through landfill liners

  • Praveen Kumar, R.;Dodagoudar, G.R.
    • Geomechanics and Engineering
    • /
    • 제2권2호
    • /
    • pp.141-156
    • /
    • 2010
  • In the framework of meshfree methods, a new methodology is developed based on radial point interpolation method (RPIM). This methodology is applied to a one-dimensional contaminant transport modelling in the saturated porous media. The one-dimensional form of advection-dispersion equation involving reactive contaminant is considered in the analysis. The Galerkin weak form of the governing equation is formulated using 1D meshfree shape functions constructed using thin plate spline radial basis functions. MATLAB code is developed to obtain the numerical solution. Numerical examples representing various phenomena, which occur during migration of contaminants, are presented to illustrate the applicability of the proposed method and the results are compared with those obtained from the analytical and finite element solutions. The proposed RPIM has generated results with no oscillations and they are insensitive to Peclet constraints. In order to test the practical applicability and performance of the RPIM, three case studies of contaminant transport through the landfill liners are presented. A good agreement is obtained between the results of the RPIM and the field investigation data.

Pressure Sensitive Paint를 이용한 압력장 측정기술의 이미지 등록에 관한 연구 (Assessment of Image Registration for Pressure-Sensitive Paint)

  • 장영기;박상현;성형진
    • 대한기계학회논문집B
    • /
    • 제28권3호
    • /
    • pp.271-280
    • /
    • 2004
  • Assessment of image registration for Pressure Sensitive Paint (PSP) was performed. A 16 bit camera and LED lamp were used with Uni-FIB paint (ISSI). Because of model displacement and deformation at 'wind-on' condition, a large error of the intensity ratio was induced between 'wind-on' and' wind-off images. To correct the error, many kinds of image registrations were tested. At first, control points were marked on the model surface to find the coefficients of polynomial transform functions between the 'wind-off' 'wind-on' images. The 2nd-order polynomial function was sufficient for representing the model displacement and deformation. An automatic detection scheme was introduced to find the exact coordinates of the control points. The present automatic detection algorithm showed more accurate and user-friendly than the manual detection algorithm. Since the coordinates of transformed pixel were not integer, five interpolation methods were applied to get the exact pixel intensity after transforming the 'wind-on' image. Among these methods, the cubic convolution interpolation scheme gave the best result.

비트율-왜곡 기반 음성 신호 시간축 분할 (A Temporal Decomposition Method Based on a Rate-distortion Criterion)

  • 이기승
    • 한국음향학회지
    • /
    • 제21권3호
    • /
    • pp.315-322
    • /
    • 2002
  • 본 논문에서는 음성 신호 시간축 분할의 새로운 기법으로, 비트율과 왜곡을 함께 고려한 기법이 제안되었다. 시간축 분할에 필요한 보간 함수는 학습 음성 데이터로부터 얻어진다. 보간 함수는 두 타겟간의 길이에 따라 유일하게 결정되므로 보간 함수는 추가 정보없이 표현된다. 타겟 샘플은 비트율을 최소화시키면서 동시에 최대 스펙트럼 오차가 문턱 치보다 작게 되도록 선택하였다. 제안된 기법은 음성 부호화기의 스펙트럼 변수로 널리 사용되는 LSP계수의 부호화에 적용되었으며, 모의실험 결과 평균적으로 8 bits/Frame의 비트율에서 1.4 dB의 스펙트럼 왜곡이 얻어짐을 알 수 있었다.

공력설계를 위한 수치최적설계기법의 연구 (A Study on Numerical Optimization Method for Aerodynamic Design)

  • 김설송;최재호;김광용
    • 한국유체기계학회 논문집
    • /
    • 제2권1호
    • /
    • pp.29-34
    • /
    • 1999
  • To develop the efficient numerical optimization method for the design of an airfoil, an evaluation of various methods coupled with two-dimensional Naviev-Stokes analysis is presented. Simplex method and Hook-Jeeves method we used as direct search methods, and steepest descent method, conjugate gradient method and DFP method are used as indirect search methods and are tested to determine the search direction. To determine the moving distance, the golden section method and cubic interpolation method are tested. The finite volume method is used to discretize two-dimensional Navier-Stokes equations, and SIMPLEC algorithm is used for a velocity-pressure correction method. For the optimal design of two-dimensional airfoil, maximum thickness, maximum ordinate of camber line and chordwise position of maximum ordinate are chosen as design variables, and the ratio of drag coefficient to lift coefficient is selected as an objective function. From the results, it is found that conjugate gradient method and cubic interpolation method are the most efficient for the determination of search direction and the moving distance, respectively.

  • PDF

Holter Data 압축 알고리즘에 관한 연구 -Piecewise Self-Affine Fractal Model을 이용한- (A Study on the Holter Data Compression Algorithm -Using Piecewise Self-Affine Fractal Model-)

  • 전영일;정형만
    • 대한의용생체공학회:의공학회지
    • /
    • 제16권1호
    • /
    • pp.17-24
    • /
    • 1995
  • 본 논문은 iterated contractive transformations을 이용한 심전도 데이터 압축에 관한 새로운 방법을 제안한다. 이방법은 piecewise self-affine fractal interpolation(PSAFI)에 의해 심전도 신호의 임의 구간들을 표현한다. Piecewise self-affine fractal model은 자기자신의 수축적 유사 변환으로 구성된다고 볼 수 있는 이산 데이터에 사용된다. 제안된 알고리즘은 MIT/BIH arrhythmia 데이터베이스로 평가되었다. PSAFI는 주어진 압축율에서 기존의 직접 압축 방법보다 상대적으로 적은 재생 오차를 나타냈다. 샘플링 주파수는 400Hz이고 resolution은 12bits인 원래 신호에 대해 압축율이 883.9bps일때 평균재생오차(APRD)는 5.39%를 나타냈다.

  • PDF

Development of Global Function Approximations of Desgin optimization Using Evolutionary Fuzzy Modeling

  • Kim, Seungjin;Lee, Jongsoo
    • Journal of Mechanical Science and Technology
    • /
    • 제14권11호
    • /
    • pp.1206-1215
    • /
    • 2000
  • This paper introduces the application of evolutionary fuzzy modeling (EFM) in constructing global function approximations to subsequent use in non-gradient based optimizations strategies. The fuzzy logic is employed for express the relationship between input training pattern in form of linguistic fuzzy rules. EFM is used to determine the optimal values of membership function parameters by adapting fuzzy rules available. In the study, genetic algorithms (GA's) treat a set of membership function parameters as design variables and evolve them until the mean square error between defuzzified outputs and actual target values are minimized. We also discuss the enhanced accuracy of function approximations, comparing with traditional response surface methods by using polynomial interpolation and back propagation neural networks in its ability to handle the typical benchmark problems.

  • PDF