• Title/Summary/Keyword: Interpolation Accuracy

Search Result 456, Processing Time 0.025 seconds

Sensitivity Analysis of Ordinary Kriging Interpolation According to Different Variogram Models (베리오그램 모델 변화에 따른 정규 크리깅 보간법의 민감도분석)

  • Woo, Kwang-Sung;Park, Jin-Hwan;Lee, Hui-Jeong
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.21 no.3
    • /
    • pp.295-304
    • /
    • 2008
  • This paper comprises two specific objectives. The first is to examine the applicability of Ordinary Kriging interpolation(OK) to finite element method that is based on variogram modeling in conjunction with different allowable limits of separation distance. The second is to investigate the accuracy according to theoretical variograms such as polynomial, Gauss, and spherical models. For this purpose, the weighted least square method is applied to obtain the estimated new stress field from the stress data at the Gauss points. The weight factor is determined by experimental and theoretical variograms for interpolation of stress data apart from the conventional interpolation methods that use an equal weight factor. The validity of the proposed approach has been tested by analyzing two numerical examples. It is noted that the numerical results by Gauss model using 25% allowable limit of separation distance show an excellent agreement with theoretical solutions in literature.

Real-time Data Enhancement of 3D Underwater Terrain Map Using Nonlinear Interpolation on Image Sonar (비선형 보간법을 이용한 수중 이미지 소나의 3 차원 해저지형 실시간 생성기법)

  • Ingyu Lee;Jason Kim;Sehwan Rho;Kee–Cheol Shin;Jaejun Lee;Son-Cheol Yu
    • Journal of Sensor Science and Technology
    • /
    • v.32 no.2
    • /
    • pp.110-117
    • /
    • 2023
  • Reconstructing underwater geometry in real time with forward-looking sonar is critical for applications such as localization, mapping, and path planning. Geometrical data must be repeatedly calculated and overwritten in real time because the reliability of the acoustic data is affected by various factors. Moreover, scattering of signal data during the coordinate conversion process may lead to geometrical errors, which lowers the accuracy of the information obtained by the sensor system. In this study, we propose a three-step data processing method with low computational cost for real-time operation. First, the number of data points to be interpolated is determined with respect to the distance between each point and the size of the data grid in a Cartesian coordinate system. Then, the data are processed with a nonlinear interpolation so that they exhibit linear properties in the coordinate system. Finally, the data are transformed based on variations in the position and orientation of the sonar over time. The results of an evaluation of our proposed approach in a simulation show that the nonlinear interpolation operation constructed a continuous underwater geometry dataset with low geometrical error.

$CIEL^{*}a^{*}b^{*}$-CMY nonlinear color transformation based on equi-visual perception color sampling (등시지각 색 샘플링에 기반한 $CIEL^{*}a^{*}b^{*}$-CMY로의 비선형 색변환)

  • 류승민;오현수;이철희;유미옥;최환언;안석출
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.18 no.1
    • /
    • pp.103-112
    • /
    • 2000
  • The color space transformation to link device-dependent color spaces and device-independent color spaces is essential for device characterization and cross-media color reproduction. There are various color conversion methods such as regression, 3D interpolation with LUT(look-up table), and neural network. In the color transformation with these methods, the conversion accuracy is essentially based on the sample data to be exploited for device characterization. In conventional method, color samples are uniformly selected in device-dependent space such as CMY and RGB. However, distribution of these color samples is very non-uniform in device-independent color space such as CIEL*a*b*. Accordingly, the conversion error in device-independent color space is irregular according to the distribution of the samples. In this paper, a color sampling method based on equi-visual perception is proposed to obtain approximate uniform color samples in CIEL*a*b* space. In order to evaluate transformation accuracy of proposed method, color space transformations are simulated using regression, 3D interpolation with LUT and neural network techniques, respectively.

  • PDF

Dual Reciprocity Boundary Element Analysis for the Graetz Problem in Circular Duct (원형 덕트유동에서의 Graetz 문제에 대한 이중교환 경계요소 해석)

  • Choi, Chang Yong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.2
    • /
    • pp.243-253
    • /
    • 1999
  • The dual reciprocity boundary element method (DRBEM) is used to solve the Graetz problem of laminar flow inside circular duct. In this method the domain integral tenn of boundary integral equation resulting from source term of governing equation is transformed into equivalent boundary-only integrals by using the radial basis interpolation function, and therefore complicate domain discretization procedure Is completely removed. Velocity profile is obtained by solving the momentum equation first and then, using this velocities as Input data, energy equation Is solved to get the temperature profile by advancing from duct entrance through the axial direction marching scheme. DRBEM solution is tested for the uniform temperature and heat flux boundary condition cases. Local Nusselt number, mixed mean temperature and temperature profile inside duct at each dimensionless axial location are obtained and compared with exact solutions for the accuracy test Solutions arc in good agreement at the entry region as well as fully developed region of circular duct, and their accuracy are verified from error analysis.

A study on the comparison of accuracy of evaluation method of earthwork volume using on DTM (DTM에서 토공량의 산정방식에 따른 토공량의 정확도 비교)

  • 문일석;전재홍;조규전
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.13 no.2
    • /
    • pp.277-283
    • /
    • 1995
  • In the study, an accuracy of earthwork volume is evaluated according to different methods of the calculation with different criteria. The criteria applied to this study are a interpolation method, a grid intavals and the method of earthwork evaluation. A numerical test has performed on two different terrain models with four different methods of calculation in the earthwork volume and two different grid intervals. The end area method, prismoidal formular, Simpson's formular, and middle area method are applied to the calculation of the earthwork volume. As a result of this study, it is showed that the moving average method with the first order term gives the most accurate result in interpolation, and that also the prismoidal formular and Simpson's formular gives more accurate result than average and area method and middle area method in the calculation of earthwork volume.

  • PDF

Efficient finite element model for dynamic analysis of laminated composite beam

  • Naushad Alam, M.;Upadhyay, Nirbhay Kr.;Anas, Mohd.
    • Structural Engineering and Mechanics
    • /
    • v.42 no.4
    • /
    • pp.471-488
    • /
    • 2012
  • An efficient one dimensional finite element model has been presented for the dynamic analysis of composite laminated beams, using the efficient layerwise zigzag theory. To meet the convergence requirements for the weak integral formulation, cubic Hermite interpolation is used for the transverse displacement ($w_0$), and linear interpolation is used for the axial displacement ($u_0$) and shear rotation (${\psi}_0$). Each node of an element has four degrees of freedom. The expressions of variationally consistent inertia, stiffness matrices and the load vector are derived in closed form using exact integration. The formulation is validated by comparing the results with the 2D-FE results for composite symmetric and sandwich beams with various end conditions. The employed finite element model is free of shear locking. The present zigzag finite element results for natural frequencies, mode shapes of cantilever and clamped-clamped beams are obtained with a one-dimensional finite element codes developed in MATLAB. These 1D-FE results for cantilever and clamped beams are compared with the 2D-FE results obtained using ABAQUS to show the accuracy of the developed MATLAB code, for zigzag theory for these boundary conditions. This comparison establishes the accuracy of zigzag finite element analysis for dynamic response under given boundary conditions.

Digital Implementation of Optimal Phase Calculation for Buck-Boost LLC Converters

  • Qian, Qinsong;Ren, Bowen;Liu, Qi;Zhan, Chengwang;Sun, Weifeng
    • Journal of Power Electronics
    • /
    • v.19 no.6
    • /
    • pp.1429-1439
    • /
    • 2019
  • Buck-Boost LLC (BBLLC) converters based on a PWM + phase control strategy are good candidates for high efficiency, high power density and wide input range applications. Nevertheless, they suffer from large computational complexity when it comes to calculating the optimal phase for ZVS of all the switches. In this paper, a method is proposed for a microcontroller unit (MCU) to calculate the optimal phase quickly and accurately. Firstly, a 2-D lookup table of the phase is established with an index of the input voltage and output current. Then, a bilinear interpolation method is applied to improve the accuracy. Meanwhile, simplification of the phase equation is presented to reduce the computational complexity. When compared with conventional curve-fitting and LUT methods, the proposed method makes the best tradeoff among the accuracy of the optimal phase, the computation time and the memory consumption of the MCU. Finally, A 350V-420V input, 24V/30A output experimental prototype is built to verify the proposed method. The efficiency can be improved by 1% when compared with the LUT method, and the computation time can be reduced by 13.5% when compared with the curve-fitting method.

Estimating Air Temperature over Mountainous Terrain by Combining Hypertemporal Satellite LST Data and Multivariate Geostatistical Methods (초단주기 지표온도 위성자료와 다변량 공간통계기법을 결합한 산지 지역의 기온 분포 추정)

  • Park, Sun-Yurp
    • Journal of the Korean Geographical Society
    • /
    • v.44 no.2
    • /
    • pp.105-121
    • /
    • 2009
  • The accurate official map of air temperature does not exist for the Hawaiian Islands due to the limited number of weather stations on the rugged volcanic landscape. To alleviate the major problem of temperature mapping, satellite-measured land surface temperature (LST) data were used as an additional source of sample points. The Moderate Resolution Imaging Spectroradiometer (MODIS) system provides hypertemperal LST data, and LST pixel values that were frequently observed (${\ge}$14 days during a 32-day composite period) had a strong, consistent correlation with air temperature. Systematic grid points with a spacing of 5km, 10km, and 20km were generated, and LST-derived air temperature estimates were extracted for each of the grid points and used as input to inverse distance weighted (IDW) and cokriging methods. Combining temperature data and digital elevation model (DEM), cokriging significantly improved interpolation accuracy compared to IDW. Although a cokriging method is useful when a primary variable is cross-correlated with elevation, interpolation accuracy was sensitively influenced by the seasonal variations of weather conditions. Since the spatial variations of local air temperature are more variable in the wet season than in the dry season, prediction errors were larger during the wet season than the dry season.

A Web-based Information System for Plant Disease Forecast Based on Weather Data at High Spatial Resolution

  • Kang, Wee-Soo;Hong, Soon-Sung;Han, Yong-Kyu;Kim, Kyu-Rang;Kim, Sung-Gi;Park, Eun-Woo
    • The Plant Pathology Journal
    • /
    • v.26 no.1
    • /
    • pp.37-48
    • /
    • 2010
  • This paper describes a web-based information system for plant disease forecast that was developed for crop growers in Gyeonggi-do, Korea. The system generates hourly or daily warnings at the spatial resolution of $240\;m{\times}240\;m$ based on weather data. The system consists of four components including weather data acquisition system, job process system, data storage system, and web service system. The spatial resolution of disease forecast is high enough to estimate daily or hourly infection risks of individual farms, so that farmers can use the forecast information practically in determining if and when fungicides are to be sprayed to control diseases. Currently, forecasting models for blast, sheath blight, and grain rot of rice, and scab and rust of pear are available for the system. As for the spatial interpolation of weather data, the interpolated temperature and relative humidity showed high accuracy as compared with the observed data at the same locations. However, the spatial interpolation of rainfall and leaf wetness events needs to be improved. For rice blast forecasting, 44.5% of infection warnings based on the observed weather data were correctly estimated when the disease forecast was made based on the interpolated weather data. The low accuracy in disease forecast based on the interpolated weather data was mainly due to the failure in estimating leaf wetness events.

A Parallel Approach for Accurate and High Performance Gridding of 3D Point Data (3D 점 데이터 그리딩을 위한 고성능 병렬처리 기법)

  • Lee, Changseop;Rizki, Permata Nur Miftahur;Lee, Heezin;Oh, Sangyoon
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.3 no.8
    • /
    • pp.251-260
    • /
    • 2014
  • 3D point data is utilized in various industry domains for its high accuracy to the surface information of an object. It is substantially utilized in geography for terrain scanning and analysis. Generally, 3D point data need to be changed by Gridding which produces a regularly spaced array of z values from irregularly spaced xyz data. But it requires long processing time and high resource cost to interpolate grid coordination. Kriging interpolation in Gridding has attracted because Kriging interpolation has more accuracy than other methods. However it haven't been used frequently since a processing is complex and slow. In this paper, we presented a parallel Gridding algorithm which contains Kriging and an application of grid data structure to fit MapReduce paradigm to this algorithm. Experiment was conducted for 1.6 and 4.3 billions of points from Airborne LiDAR files using our proposed MapReduce structure and the results show that the total execution time is decreased more than three times to the convention sequential program on three heterogenous clusters.