• Title/Summary/Keyword: Interplanetary shock

Search Result 22, Processing Time 0.021 seconds

PHYSICAL CHARACTERISTICS OF CORONAL REGION DRIVING OUT THE INTERPLANETARY SHOCK (행성간 충격파 발생 코로나 영역의 물리적 특성)

  • Oh, Su-Yeon;Yi, Yu
    • Journal of Astronomy and Space Sciences
    • /
    • v.25 no.1
    • /
    • pp.25-32
    • /
    • 2008
  • Using the solar wind data of 2000 observed by ACE, We classified the interplanetary shock on basis of shock driver. We examined the physical properties of shock drivers such as the ratio of charge states(O7/O6) and thermal index$(I_{th})$. Most of 51 interplanetary shocks are driven by interplanetary coronal mass ejections(ICME; magnetic cloud and ejecta) and high speed streams. According to the test of temperature(O7/O6) and $I_{th}$, we found that ICMEs originated from region with hot source in corona.

Magnetic Cloud and its Interplanetary Shock Sheath as a Modulator of the Cosmic Ray Intensity (우주선 Intensity 조정자로서 자기구름과 그 주위의 행성간 충격파 sheath 영역의 역할)

  • Oh, Su-Yeon
    • Journal of Astronomy and Space Sciences
    • /
    • v.25 no.2
    • /
    • pp.149-156
    • /
    • 2008
  • Forbush Decreases (FDs) are representative events of abrupt decrease in galactic cosmic ray intensity. They are known to be strongly associated with solar wind events such as interplanetary shock (IP shock) and magnetic cloud (MC). In order to examine effectiveness of the MC on FDs, I studied the 44 MCs that occurred during the 2 years from 1998 to 1999 and investigated the properties of interplanetary magnetic field (IMF) and solar wind. As a result, I found that 11 out of 44 MCs are associated with the FDs. In particularly, it is noted that the FDs are driven by the IP shock sheaths which are associated with over 13 nT of IMF magnitude, 3 nT of IMF turbulence, and 550km/s of solar wind speed. This result indicates that magnetic cloud and its interplanetary shock sheath work as a modulator of the cosmic ray intensity.

TRANSIT OF THE INTERPLANETARY SHOCKS ASSOCIATED WITH TYPE II RADIO BURSTS WITHIN 1AU (Type II 전파폭발이 관측된 행성간 충격파의 1AU 내에서의 전파 과정)

  • Oh, Su-Yeon;Yi, Yu;Kim, Yong-Ha
    • Journal of Astronomy and Space Sciences
    • /
    • v.24 no.3
    • /
    • pp.219-226
    • /
    • 2007
  • Among the interplanetary shock (IP shock)s observed by ACE spacecraft at 1AU during 1997 to 2000, we have selected 31 IP shocks which had triggered the interplanetary type II radio bursts detected by the WIND spacecraft while those shocks were leaving the Sun. We compared the observed IP shock propagation speeds and the IP shock transit speeds estimated by time difference between the interplanetary type II radio burst detection and the IP shock observation. Then, we found that the mean acceleration of the IP shocks between the Sun and the Earth is about $-1.02m/sec^2$, which means the deceleration contrary to the positive acceleration predicted by Parker solar wind model. It is also verified that the acceleration of the IP shock does not show any linear correlation with the shock propagation speed and the Mach number of the IP shock.

CLASSIFICATION OF THE INTERPLANETARY SHOCKS BY SHOCK DRIVERS

  • OH SU YEON;YI YU;NAH JA-KYUNG;CHO KYUNG-SEOK
    • Journal of The Korean Astronomical Society
    • /
    • v.35 no.3
    • /
    • pp.151-157
    • /
    • 2002
  • From the data of solar wind observation by ACE spacecraft orbiting the Earth-Sun Lagrangian point, we selected 48 forward interplanetary shocks(IPSs) occurred in 2000, maximum solar activity period. Examining the profiles of solar wind parameters, the IPSs are classified by their shock drivers. The significant shock drivers are the interplanetary coronal mass ejection(ICME) and the high speed stream(HSS). The IPSs driven by the ICMEs are classified into shocks driven by magnetic clouds and by ejectas based on the existence of magnetic flux rope structure and magnetic field strength. Some IPSs could be formed as the blast wave by the smaller energy and shorter duration of shock drivers such as type II radio burst. Out of selected 48 forward IPSs, $56.2\%$ of the IPSs are driven by ICME, $16.7\%$ by HSS, and $16.7\%$ of the shocks are classified into blast-wave type shocks. However, the shock drivers of remaining $10\%$ of the IPSs are unidentified. The classification of the IPSs by their driver is a first step toward investigating the critical magnitudes of the IPS drivers commencing the magnetic storms in each class.

RELATIONSHIPS OF THE SOLAR WIND PARAMETERS WITH THE MAGNETIC STORM MAGNITUDE AND THEIR ASSOCIATION WITH THE INTERPLANETARY SHOCK

  • OH SU YEON;YI YU
    • Journal of The Korean Astronomical Society
    • /
    • v.37 no.4
    • /
    • pp.151-157
    • /
    • 2004
  • It is investigated quantitative relations between the magnetic storm magnitude and the solar wind parameters such as the Interplanetary Magnetic Field (hereinafter, IMF) magnitude (B), the southward component of IMF (Bz), and the dynamic pressure during the main phase of the magnetic storm with focus on the role of the interplanetary shock (hereinafter, IPS) in order to build the space weather fore-casting model in the future capable to predict the occurrence of the magnetic storm and its magnitude quantitatively. Total 113 moderate and intense magnetic storms and 189 forward IPSs are selected for four years from 1998 to 2001. The results agree with the general consensus that solar wind parameter, especially, Bz component in the shocked gas region plays the most important role in generating storms (Tsurutani and Gonzales, 1997). However, we found that the correlations between the solar wind parameters and the magnetic storm magnitude are higher in case the storm happens after the IPS passing than in case the storm occurs without any IPS influence. The correlation coefficients of B and $BZ_(min)$ are specially over 0.8 while the magnetic storms are driven by IPSs. Even though recently a Dst prediction model based on the real time solar wind data (Temerin and Li, 2002) is made, our correlation test results would be supplementary in estimating the prediction error of such kind of model and in improving the model by using the different fitting parameters in cases associated with IPS or not associated with IPS rather than single fitting parameter in the current model.

Simultaneous Forbush Decrease caused by a CME shot by the STEREO

  • Oh, Su-Yeon;Yi, Yu
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.2
    • /
    • pp.80.2-80.2
    • /
    • 2011
  • The sudden decrease of galactic cosmic ray (GCR) intensity observed by ground neutron monitor (NM) is called a Forbush decrease (FD) event. The intensity time profile of FD event looks like the geomagnetic storm visualized by geomagnetic storm index Dst. Oh et al. [2008] and Oh and Yi [2009] classified the FD events into two kinds by criteria of the overlapping simultaneity of main phase in universal time (UT). The FD event is defined simultaneous if the main phase parts observed by the stations distributed evenly around the Earth are overlapped in UT and non-simultaneous if ones are overlapped in each station's local time (LT). They suggested the occurrence mechanisms of two kind FD events related to the interplanetary magnetic structures such as the interplanetary shock (IP shock) and magnetic cloud. According to their model, the simultaneity of FD depends on the strength and propagation direction of interactive magnetic structures overtaking the Earth. Now the STEREO mission can visualize the emergence and propagation direction of the coronal mass ejection (CME) in 3-dimension in the heliosphere. Thus, it is possible to test the suggested mechanisms causing two different types of FD events. One simultaneous FD observed on February 17, 2011 may be caused by a CME heading directly toward the Earth observed on February 15, 2011 by the STEREO mission. The simultaneity of FD event is proved to be a useful analysis tool in figuring out the geo-effectiveness of solar events such as interplanetary CMEs and IP shocks.

  • PDF

Storm Sudden Commencements Without Interplanetary Shocks

  • Park, Wooyeon;Lee, Jeongwoo;Yi, Yu;Ssessanga, Nicholas;Oh, Suyeon
    • Journal of Astronomy and Space Sciences
    • /
    • v.32 no.3
    • /
    • pp.181-187
    • /
    • 2015
  • Storm sudden commencements (SSCs) occur due to a rapid compression of the Earth's magnetic field. This is generally believed to be caused by interplanetary (IP) shocks, but with exceptions. In this paper we explore possible causes of SSCs other than IP shocks through a statistical study of geomagnetic storms using SYM-H data provided by the World Data Center for Geomagnetism - Kyoto and by applying a superposed epoch analysis to simultaneous solar wind parameters obtained with the Advanced Composition Explorer (ACE) satellite. We select a total of 274 geomagnetic storms with minimum SYM-H of less than -30nT during 1998-2008 and regard them as SSCs if SYM-H increases by more than 10 nT over 10 minutes. Under this criterion, we found 103 geomagnetic storms with both SSC and IP shocks and 28 storms with SSC not associated with IP shocks. Storms in the former group share the property that the strength of the interplanetary magnetic field (IMF), proton density and proton velocity increase together with SYM-H, implying the action of IP shocks. During the storms in the latter group, only the proton density rises with SYM-H. We find that the density increase is associated with either high speed streams (HSSs) or interplanetary coronal mass ejections (ICMEs), and suggest that HSSs and ICMEs may be alternative contributors to SSCs.