• Title/Summary/Keyword: Interplanetary magnetic field

Search Result 61, Processing Time 0.031 seconds

COMPARISON OF HELICITY SIGNS IN INTERPLANETARY CMES AND THEIR SOLAR SOURCE REGIONS

  • Cho, Kyungsuk;Park, Sunghong;Marubashi, Katsuhide;Gopalswamy, Nat;Akiyama, Sachiko;Yashiro, Seiji;Kim, Roksoon;Lim, Eunkyung
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.137.1-137.1
    • /
    • 2012
  • If all Coronal mass ejections (CMEs) have flux ropes, then the CMEs should keep their helicity signs from the Sun to the Earth according to the helicity conservation principle. We select 34 CME-ICME pairs whose source active regions (ARs) have continuous SOHO/MDI magnetogram data covering more than 24 hr without data gap during the passage of the ARs near the solar disk centre. The helicity signs in the ARs are determined by estimation of accumulating amounts of helicity injections through the photospheric surfaces in the entire source ARs. The helicity signs in the ICMEs are estimated by applying the cylinder model developed by Marubashi (2000) to 16 second resolution magnetic field data from the MAG instrument onboard the ACE spacecraft. It is found that 30 out of 34 events (88%) are helicity sign-consistent events, while 4 events (12%) are sign-inconsistent. Through a detailed investigation of the AR solar origins of the 4 exceptional events, we find that those exceptional events can be explained by the local AR helicity sign opposite to that of the entire AR helicity (2000 July 28 ICME), incorrectly reported solar source in CDAW (2005 May 20 ICME), or the helicity sign of the pre-existing coronal magnetic field (2000 October 13 and 2003 November 20 ICMEs). We conclude that the helicity signs of the ICMEs are quite consistent with those of the injected helicities in the AR regions where CMEs were erupted.

  • PDF

IONOSPHERE-THERMOSPHERE INTERACTIONS BASED ON NCAR-TIEGCM: THE INFLUENCE OF THE INTERPLANETARY MAGNETIC FIELD (IMF)-DEPENDENT IONOSPHERIC CONVECTION ON THE HIGH-LATITUDE LOWER THERMOSPHERIC WIND (NCAR-TIEGCM을 이용한 이온권-열권의 상호작용 연구: 행성간 자기장(IMF)에 의존적인 이온권 플라즈마대류의 고위도 하부 열권 바람에 대한 영향)

  • 곽영실;안병호;원영인
    • Journal of Astronomy and Space Sciences
    • /
    • v.21 no.1
    • /
    • pp.11-28
    • /
    • 2004
  • To better understand how high-latitude electric fields influence thermospheric dynamics, winds in the high-latitude lower thermosphere are studied by using the Thermosphere-ionosphere Electrodynamics General Circulation Model developed by the National Conte. for Atmospheric Research (NCAR-TIEGCM). The model is run for the conditions of 1992-1993 southern summer. The association of the model results with the interplanetary magnetic field(IMF) is also examined to determine the influences of the IMF-dependent ionospheric convection on the winds. The wind patterns show good agreement with the WINDII observations, although the model wind speeds are generally weaker than the observations. It is confirmed that the influences of high-latitude ionospheric convection on summertime thermospheric winds are seen down to 105 km. The difference wind, the difference between the winds for IMF$\neq$O and IMF=0, during negative IMF $B_y$ shows a strong anticyclonic vortex while during positive IMF $B_y$ a strong cyclonic vortex down to 105 km. For positive IMF $B_z$ the difference winds are largely confined to the polar cap, while for negative IMF B, they extend down to subauroral latitudes. The IMF $B_z$ -dependent diurnal wind component is strongly correlated with the corresponding component of ionospheric convection velocity down to 108 km and is largely rotational. The influence of IMF by on the lower thermospheric summertime zonal-mean zonal wind is substantial at high latitudes, with maximum wind speeds being $60\;ms^-1$ at 130 km around $77^{\circ}$ magnetic latitude.

A Study of the Momentum Balance in the High-Latitude Lower Thermosphere Based on the Ncar-Tiegcm: Dependence on the Interplanetary Magnetic Field (IMF)

  • Kwak, Young-Sil;Ahn, Byung-Ho;Arthur D. Richmond
    • Bulletin of the Korean Space Science Society
    • /
    • 2004.04a
    • /
    • pp.70-70
    • /
    • 2004
  • Lower thermospheric winds are forced primarily by non-uniform solar heating, atmospheric tides and other waves coming from below, and energy and momentum forcing associated with high-latitude magnetosphere-ionosphere coupling, particularly ion drag and Joule heating. To understand the physical processes that control the thermospheric dynamics, we quantify the momentum forces that are mainly responsible for maintaining the high-latitude lower thermospheric wind system and examine the resulting momentum balance with the aid of the Thermosphere-Ionosphere Electrodynamics General Circulation Model (NCAR-TIEGCM) developed by the National Center for Atmospheric Research. (omitted)

  • PDF

SPACE SOLAR TELESCOPE

  • AI GUOXIANG
    • Journal of The Korean Astronomical Society
    • /
    • v.29 no.spc1
    • /
    • pp.415-418
    • /
    • 1996
  • Space Solar Telescope (SST) is a space project for solar research, its main parameters are that total weight 2.0T, sun synchronous polar circular orbit, altitude of the orbit 730KM, 3 axis stabilized attitude system, power 1200W, telemetry of the downlink rate 30Mb/s, size $5{\ast}2{\ast}2\;M^3$, mission life 3 years. It is expected it will be launched in 2001 or later. The main objective is structure and evolution of solar vector magnetic field with very high spatial resolution. The payloads are consisted of 6 instruments: Main optical telescope with 1-M diameter and diffraction limited resolution 0.1 arc second, EUV imaging telescope with a bundle of four telescopes and 0.5 arc second resolution, spectrometric optical coronagraph, wide band spectrometer, H-alpha and white light telescope and solar and interplanetary radiospectrometer. An assessment study between China and Germany is under operation.

  • PDF

METEORITES: ROCKS FROM THE OUTER SPACE

  • Doh, Seong-Jae;Yu, Yong-Jae
    • Journal of The Korean Astronomical Society
    • /
    • v.43 no.6
    • /
    • pp.183-190
    • /
    • 2010
  • According to the historical documents and paintings in many civilizations, rocks that fell from the sky fascinated humans as the message from the God or supernaturals. Scientific progress allows humans to recognize these exciting extraterrestrial objects as meteorites. Meteorites contain a wealth of pivotal information regarding formation of the early Solar System. Meteorites also provide broader scientific insights on, for example, the origin of life, interplanetary transfer of life forms, massive depletion of biosphere on Earth, and evolution of lithosphere on Earth-like planetary bodies.

SOLAR ACTIVITY AND SPACE ENVIRONMENT (태양활동과 우주환경)

  • YUN HONG SIK
    • Publications of The Korean Astronomical Society
    • /
    • v.14 no.2
    • /
    • pp.83-89
    • /
    • 1999
  • The Earth is exposed to constant outflow of the solar wind from the outer layers of the Sun, and violent transient events taking place from active regions increase the energy flux of both radiation and particles leaving the Sun. Thus the space surrounding the Earth is a highly dynamic environment that responds sensitively to changes in radiation, particles and magnetic field arriving from the Sun. Nowadays, it becomes increasingly important to understand how the physical system of Earth-space works and how the space around the Earth connects to interplanetary space. In the present paper we describe how explosive solar events, such as CME(Coronal Mass Ejection) and flares affect the Earth-space environment and how the space weather reacts to them. Practical consequences are presented to demonstrate why a broader view of Earth's environment is greatly needed to cope with modern day's inhabitation problem in a rapidly developing space age.

  • PDF

Thermospheric Wind Observation and Simulation during the Nov 4, 2021 Geomagnetic Storm Event

  • Wu, Qian;Lin, Dong;Wang, Wenbin;Ward, William
    • Journal of Astronomy and Space Sciences
    • /
    • v.39 no.3
    • /
    • pp.79-86
    • /
    • 2022
  • Thermospheric wind observations from high to mid latitudes are compared with the newly developed Multiscale Atmosphere Geospace Environment (MAGE) model for the Nov 3-4 geomagnetic storm. The observation and simulation comparison shows a very good agreement and is better at high latitudes in general. We were able to identify a thermospheric poleward wind reduction possibly linked to a northward turning of the Interplanetary Magnetic Field (IMF) at ~22 UT on Nov 3 and an enhancement of the poleward wind to a southward turning near 10 UT on Nov 4 at high latitudes. An IMF southward turning may have led to an enhancement of equatorward winds at Boulder, Colorado near midnight. Simultaneous occurrence of aurora may be associated with an IMF By turning negative. The MAGE model wind simulations are consistent with observations in these cases. The results show the model can be a very useful tool to further study the magnetosphere and ionosphere coupling on short time scales.

Spectral Analysis of Geomagnetic Activity Indices and Solar Wind Parameters

  • Kim, Jung-Hee;Chang, Heon-Young
    • Journal of Astronomy and Space Sciences
    • /
    • v.31 no.2
    • /
    • pp.159-167
    • /
    • 2014
  • Solar variability is widely known to affect the interplanetary space and in turn the Earth's electromagnetical environment on the basis of common periodicities in the solar and geomagnetic activity indices. The goal of this study is twofold. Firstly, we attempt to associate modes by comparing a temporal behavior of the power of geomagnetic activity parameters since it is barely sufficient searching for common peaks with a similar periodicity in order to causally correlate geomagnetic activity parameters. As a result of the wavelet transform analysis we are able to obtain information on the temporal behavior of the power in the velocity of the solar wind, the number density of protons in the solar wind, the AE index, the Dst index, the interplanetary magnetic field, B and its three components of the GSM coordinate system, $B_X$, $B_Y$, $B_Z$. Secondly, we also attempt to search for any signatures of influence on the space environment near the Earth by inner planets orbiting around the Sun. Our main findings are as follows: (1) Parameters we have investigated show periodicities of ~ 27 days, ~ 13.5 days, ~ 9 days. (2) The peaks in the power spectrum of $B_Z$ appear to be split due to an unknown agent. (3) For some modes powers are not present all the time and intervals showing high powers do not always coincide. (4) Noticeable peaks do not emerge at those frequencies corresponding to the synodic and/or sidereal periods of Mercury and Venus, which leads us to conclude that the Earth's space environment is not subject to the shadow of the inner planets as suggested earlier.

Response of the Poleward Boundary of the Nightside Auroral Oval to Impacts of Solar Wind Dynamic Pressure Enhancement

  • Cho, Joon-Sik;Lee, Dae-Young;Kim, Kyung-Chan;Lee, Ji-Hee
    • Journal of Astronomy and Space Sciences
    • /
    • v.27 no.3
    • /
    • pp.189-194
    • /
    • 2010
  • In this paper we have investigated latitudinal variations of the poleward boundary of the nightside auroral oval when the magnetosphere is hit by an enhanced solar wind dynamic pressure front. We used precipitating particle data obtained from Defense Meteorological Satellite Program satellites to identify the locations of the boundary before and after enhanced pressure impacts. The boundary locations are represented by a parameter called "b5e". After performing the analysis for a number of events, we found that the basic effect of the solar wind pressure increase impact is often (but not always) to move the poleward boundary of the nightside auroral oval poleward. However, this effect can be often modified by other factors, such as simultaneous variations of the interplanetary magnetic field with a pressure increase, and thus the boundary response is not necessarily a poleward shift in many cases. We demonstrate this with specific examples, and discuss other possible complicating factors.

Ionospheric F2-Layer Semi-Annual Variation in Middle Latitude by Solar Activity

  • Park, Yoon-Kyung;Kwak, Young-Sil;Ahn, Byung-Ho;Park, Young-Deuk;Cho, Il-Hyun
    • Journal of Astronomy and Space Sciences
    • /
    • v.27 no.4
    • /
    • pp.319-327
    • /
    • 2010
  • We examine the ionospheric F2-layer electron density variation by solar activity in middle latitude by using foF2 observed at the Kokubunji ionosonde station in Japan for the period from 1997 to 2008. The semi-annual variation of foF2 shows obviously in high solar activity (2000-2002) than low solar activity (2006-2008). It seems that variation of geomagnetic activity by solar activity influences on the semi-annual variation of the ionospheric F2-layer electron density. According to the Lomb-Scargle periodogram analysis of foF2 and Ap index, interplanetary magnetic field (IMF) Bs (IMF Bz <0) component, solar wind speed, solar wind number density and flow pressure which influence the geomagnetic activity, we examine how the geomagnetic activity affects the ionospheric F2-layer electron density variation. We find that the semi-annual variation of daily foF2, Ap index and IMF Bs appear clearly during the high solar activity. It suggests that the semi-annual variation of geomagnetic activity, caused by Russell-McPherron effect, contributes greatly to the ionospheric F2-layer semi-annual electron density variation, except dynamical effects in the thermosphere.