• Title/Summary/Keyword: Interplanetary magnetic field

Search Result 61, Processing Time 0.033 seconds

Variation of Magnetic Field (By, Bz) Polarity and Statistical Analysis of Solar Wind Parameters during the Magnetic Storm Period

  • Moon, Ga-Hee
    • Journal of Astronomy and Space Sciences
    • /
    • v.28 no.2
    • /
    • pp.123-132
    • /
    • 2011
  • It is generally believed that the occurrence of a magnetic storm depends upon the solar wind conditions, particularly the southward interplanetary magnetic field (IMF) component. To understand the relationship between solar wind parameters and magnetic storms, variations in magnetic field polarity and solar wind parameters during magnetic storms are examined. A total of 156 storms during the period of 1997~2003 are used. According to the interplanetary driver, magnetic storms are divided into three types, which are coronal mass ejection (CME)-driven storms, co-rotating interaction region (CIR)-driven storms, and complicated type storms. Complicated types were not included in this study. For this purpose, the manner in which the direction change of IMF $B_y$ and $B_z$ components (in geocentric solar magnetospheric coordinate system coordinate) during the main phase is related with the development of the storm is examined. The time-integrated solar wind parameters are compared with the time-integrated disturbance storm time (Dst) index during the main phase of each magnetic storm. The time lag with the storm size is also investigated. Some results are worth noting: CME-driven storms, under steady conditions of $B_z$ < 0, represent more than half of the storms in number. That is, it is found that the average number of storms for negative sign of IMF $B_z$ (T1~T4) is high, at 56.4%, 53.0%, and 63.7% in each storm category, respectively. However, for the CIR-driven storms, the percentage of moderate storms is only 29.2%, while the number of intense storms is more than half (60.0%) under the $B_z$ < 0 condition. It is found that the correlation is highest between the time-integrated IMF $B_z$ and the time-integrated Dst index for the CME-driven storms. On the other hand, for the CIR-driven storms, a high correlation is found, with the correlation coefficient being 0.93, between time-integrated Dst index and time-integrated solar wind speed, while a low correlation, 0.51, is found between timeintegrated $B_z$ and time-integrated Dst index. The relationship between storm size and time lag in terms of hours from $B_z$ minimum to Dst minimum values is investigated. For the CME-driven storms, time lag of 26% of moderate storms is one hour, whereas time lag of 33% of moderate storms is two hours for the CIR-driven storms. The average values of solar wind parameters for the CME and CIR-driven storms are also examined. The average values of ${\mid}Dst_{min}{\mid}$ and ${\mid}B_{zmin}{\mid}$ for the CME-driven storms are higher than those of CIR-driven storms, while the average value of temperature is lower.

CORRELATION BETWEEN MONTHLY CUMULATIVE AURORAL ELECTROJET INDICES, DST INDEX AND INTERPLANETARY ELECTRIC FIELD DURING MAGNETIC STORMS (자기폭풍 기간 동안의 월별 누적 오로라 제트전류 지수, Dst 지수 및 행성간 전기장 사이의 상관관계)

  • Park, Yoon-Kyung;Ahn, Byung-Ho;Moon, Ga-Hee
    • Journal of Astronomy and Space Sciences
    • /
    • v.22 no.4
    • /
    • pp.409-418
    • /
    • 2005
  • Magnetospheric substorms occur frequently during magnetic storms, suggesting that the two phenomena are closely associated. We can investigate the relation between magnetospheric substorms and magnetic storms by examining the correlation between AE and Dst indices. For this purpose, we calculated the monthly cumulative AU, $\mid{AL}\mid$ and $\mid{Dst}\mid$ indices. The correlation coefficient between the monthly cumulative $\mid{AL}\mid$ and $\mid{Dst}\mid$ index is found to be 0.60, while that between monthly cumulative AU and $\mid{Dst}\mid$ index is 0.28. This result indicates that substorms seem to contribute to the development of magnetic storms. On the other hand, it has been reported that the interplanetary electric field associated with southward IMF intensifies the magnetospheric convection, which injects charged particles into the inner magnetosphere, thus developing the ring current. To evaluate the contribution of the interplanetary electric field to the development of the storm time ring current belt, we compared the monthly cumulative interplanetary electric field and the monthly cumulative Dst index. The correlation coefficient between the two cumulative indices is 0.83 for southward IMP and 0.39 for northward IMF. It indicates that magnetospheric convection induced by southward IMF is also important in developing magnetic storms. Therefore, both magnetospheric substorm and enhanced magnetospheric convection seem to contribute to the buildup of magnetic storm.

Problems in Identification of ICMEs and Magnetic Clouds

  • Marubashi, Katsuhide;Kim, Yeon-Han;Cho, Kyung-Suk;Park, Young-Deuk;Choi, Kyu-Cheol;Baek, Ji-Hye;Choi, Seong-Hwan
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.35 no.2
    • /
    • pp.46.1-46.1
    • /
    • 2010
  • This work is a part of our project to establish a Website which provides a list of magnetic clouds (MCs) identified by WIND and ACE spacecraft. MCs are characterized by their magnetic fields that are well described by magnetic flux rope structures, whereas interplanetary coronal mass ejections (ICMEs) are interplanetary manifestations of coronal mass ejections (CMEs), usually identified by differences of plasma and magnetic field characteristics from those in the background solar wind. It is widely accepted that, while MCs are generally identified within ICMEs, the number of MCs are significantly lower than the number of ICMEs. In our effort to identify MCs, however, we have found that there was a big problem in identification method of MCs in previous works. Generally speaking, most of the previous surveys failed in identifying MCs which encounter the spacecraft at large distances from the MC axis, or near the surface of MC structures. In our survey, MCs are identified as the region of which magnetic fields are well described by appropriate flux rope models. Thus, we could selected over 45 MCs, in 1999 solar wind data for instance, while 33 ICMEs are listed in the Website of the ACE Science Center reported by Richardson and Cane.

  • PDF

Characteristics of Solar Wind Density Depletions During Solar Cycles 23 and 24

  • Park, Keunchan;Lee, Jeongwoo;Yi, Yu;Lee, Jaejin;Sohn, Jongdae
    • Journal of Astronomy and Space Sciences
    • /
    • v.34 no.2
    • /
    • pp.105-110
    • /
    • 2017
  • Solar wind density depletions are phenomena that solar wind density is rapidly decreased and keep the state. They are generally believed to be caused by the interplanetary (IP) shocks. However, there are other cases that are hardly associated with IP shocks. We set up a hypothesis for this phenomenon and analyze this study. We have collected the solar wind parameters such as density, speed and interplanetary magnetic field (IMF) data related to the solar wind density depletion events during the period from 1996 to 2013 that are obtained with the advanced composition explorer (ACE) and the Wind satellite. We also calculate two pressures (magnetic, dynamic) and analyze the relation with density depletion. As a result, we found total 53 events and the most these phenomena's sources caused by IP shock are interplanetary coronal mass ejection (ICME). We also found that solar wind density depletions are scarcely related with IP shock's parameters. The solar wind density is correlated with solar wind dynamic pressure within density depletion. However, the solar wind density has an little anti-correlation with IMF strength during all events of solar wind density depletion, regardless of the presence of IP shocks. Additionally, In 47 events of IP shocks, we find 6 events that show a feature of blast wave. The quantities of IP shocks are weaker than blast wave from the Sun, they are declined in a short time after increasing rapidly. We thus argue that IMF strength or dynamic pressure are an important factor in understanding the nature of solar wind density depletion. Since IMF strength and solar wind speed varies with solar cycle, we will also investigate the characteristics of solar wind density depletion events in different phases of solar cycle as an additional clue to their physical nature.

Storm-Time Behaviour of Meso-Scale Field-Aligned Currents: Case Study with Three Geomagnetic Storm Events

  • Awuor, Adero Ochieng;Baki, Paul;Olwendo, Joseph;Kotze, Pieter
    • Journal of Astronomy and Space Sciences
    • /
    • v.36 no.3
    • /
    • pp.133-147
    • /
    • 2019
  • Challenging Minisatellite Payload (CHAMP) satellite magnetic data are used to investigate the latitudinal variation of the storm-time meso-scale field-aligned currents by defining a new metric called the FAC range. Three major geomagnetic storm events are considered. Alongside SymH, the possible contributions from solar wind dynamic pressure and interplanetary magnetic field (IMF) $B_Z$ are also investigated. The results show that the new metric predicts the latitudinal variation of FACs better than previous studies. As expected, the equatorward expansion and poleward retreat are observed during the storm main phase and recovery phase respectively. The equatorward shift is prominent on the northern duskside, at ${\sim}58^{\circ}$ coinciding with the minimum SymH and dayside at ${\sim}59^{\circ}$ compared to dawnside and nightside respectively. The latitudinal shift of FAC range is better correlated to IMF $B_Z$ in northern hemisphere dusk-dawn magnetic local time (MLT) sectors than in southern hemisphere. The FAC range latitudinal shifts responds better to dynamic pressure in the duskside northern hemisphere and dawnside southern hemisphere than in southern hemisphere dusk sector and northern hemisphere dawn sector respectively. FAC range exhibits a good correlation with dynamic pressure in the dayside (nightside) southern (northern) hemispheres depicting possible electrodynamic similarity at day-night MLT sectors in the opposite hemispheres.

STUDY ON THE PARTICLE INJECTIONS DURING HILDCAA INTERVALS

  • Kim, Hee-Jeong
    • Journal of Astronomy and Space Sciences
    • /
    • v.24 no.2
    • /
    • pp.119-124
    • /
    • 2007
  • The relation between substorm occurrences and HILDCAA events has been an issue. We have studied the association of particle injections with substorm onsets during HILDCAA intervals for the first half of year 2003. The examination of aurora images observed by IMAGE spacecraft and electron flux data measured by LANL satellites exhibits a close association of repetitive particle injections with substorm activity. We also find that HILDCAA events can occur equally frequently during slow speed solar wind streams as long as the interplanetary magnetic field exhibits Alfvenic wave feature.

Characteristic So1ar Wind Dynamics Associated With Geosynchronous Relativistic Electron Events

  • Ki, Hui-Jeong
    • Bulletin of the Korean Space Science Society
    • /
    • 2004.04a
    • /
    • pp.41-41
    • /
    • 2004
  • We report the results on the investigation of the association of solar wind dynamics and the occurrence of geosynchronous relativistic electron events. This study analyzed E>2MeV electron fluxes measured by GOES 10 satellite and solar wind parameters by ACE satellite for April, 1999 to December, 2002. Most of the relativistic events during the time period are found to be accompanied by the prolonged period of quiet solar wind dynamics which is characterized as low solar wind pressure, weak interplanetary magnetic field, and fast fluctuations in IMF Bz. (omitted)

  • PDF