• Title/Summary/Keyword: Internet search

Search Result 1,637, Processing Time 0.036 seconds

Analysis of Research Trends of 'Word of Mouth (WoM)' through Main Path and Word Co-occurrence Network (주경로 분석과 연관어 네트워크 분석을 통한 '구전(WoM)' 관련 연구동향 분석)

  • Shin, Hyunbo;Kim, Hea-Jin
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.3
    • /
    • pp.179-200
    • /
    • 2019
  • Word-of-mouth (WoM) is defined by consumer activities that share information concerning consumption. WoM activities have long been recognized as important in corporate marketing processes and have received much attention, especially in the marketing field. Recently, according to the development of the Internet, the way in which people exchange information in online news and online communities has been expanded, and WoM is diversified in terms of word of mouth, score, rating, and liking. Social media makes online users easy access to information and online WoM is considered a key source of information. Although various studies on WoM have been preceded by this phenomenon, there is no meta-analysis study that comprehensively analyzes them. This study proposed a method to extract major researches by applying text mining techniques and to grasp the main issues of researches in order to find the trend of WoM research using scholarly big data. To this end, a total of 4389 documents were collected by the keyword 'Word-of-mouth' from 1941 to 2018 in Scopus (www.scopus.com), a citation database, and the data were refined through preprocessing such as English morphological analysis, stopwords removal, and noun extraction. To carry out this study, we adopted main path analysis (MPA) and word co-occurrence network analysis. MPA detects key researches and is used to track the development trajectory of academic field, and presents the research trend from a macro perspective. For this, we constructed a citation network based on the collected data. The node means a document and the link means a citation relation in citation network. We then detected the key-route main path by applying SPC (Search Path Count) weights. As a result, the main path composed of 30 documents extracted from a citation network. The main path was able to confirm the change of the academic area which was developing along with the change of the times reflecting the industrial change such as various industrial groups. The results of MPA revealed that WoM research was distinguished by five periods: (1) establishment of aspects and critical elements of WoM, (2) relationship analysis between WoM variables, (3) beginning of researches of online WoM, (4) relationship analysis between WoM and purchase, and (5) broadening of topics. It was found that changes within the industry was reflected in the results such as online development and social media. Very recent studies showed that the topics and approaches related WoM were being diversified to circumstantial changes. However, the results showed that even though WoM was used in diverse fields, the main stream of the researches of WoM from the start to the end, was related to marketing and figuring out the influential factors that proliferate WoM. By applying word co-occurrence network analysis, the research trend is presented from a microscopic point of view. Word co-occurrence network was constructed to analyze the relationship between keywords and social network analysis (SNA) was utilized. We divided the data into three periods to investigate the periodic changes and trends in discussion of WoM. SNA showed that Period 1 (1941~2008) consisted of clusters regarding relationship, source, and consumers. Period 2 (2009~2013) contained clusters of satisfaction, community, social networks, review, and internet. Clusters of period 3 (2014~2018) involved satisfaction, medium, review, and interview. The periodic changes of clusters showed transition from offline to online WoM. Media of WoM have become an important factor in spreading the words. This study conducted a quantitative meta-analysis based on scholarly big data regarding WoM. The main contribution of this study is that it provides a micro perspective on the research trend of WoM as well as the macro perspective. The limitation of this study is that the citation network constructed in this study is a network based on the direct citation relation of the collected documents for MPA.

A Study of the Influence of Online Word-of-Mouth on the Customer Purchase Intention (온라인 구전정보가 소비자 구매의도에 미치는 영향에 대한 실증연구: 제품관여도, 조절초점, 자기효능감의 조절효과를 중심으로)

  • Yoo, Chang Jo;Ahn, Kwang Ho;Park, Sung Whi
    • Asia Marketing Journal
    • /
    • v.13 no.3
    • /
    • pp.209-231
    • /
    • 2011
  • Internet is having strong impact on the consumer's decision making process. Information search has been done actively through internet today. The online reviews can be crucial information cue to evaluate the alternarive products. The online WOM(Word-Of-Mouth) effect depends on the characteristics of information sender, receiver, and WOM. This study is to examine the influence of the online word of mouth on the consumer purchase intention and the moderating role of product involvement, consumer regulatory focus and self-efficacy. Positive customer reviews on the products influence the purchase intention positively and negative customer reviews influence it negatively. Moderating role of involvement in the causal relation between the valence of online reviews and purchase intention is tested. In case of positive WOM, it is predicted that purchase intention for high involvement products is higher than that of low involvement. In case of negative WOM, purchase intention for high involvement product is lower than that of low involvement product. And this study invetigate the moderating role of regulatory focus. In case of positive WOM, it is predicted that promotion focus oriented consumers have higher purchase intention than prevention focus oriented consumers. In case of negative WOM, prediction is that prevention focus oriented consumers have lower purchase intention than promotion focus oriented consumers. Then we examine the moderating role of self efficacy in the causal relation between the valence of online reviews and purchase intention. In case of positive WOM, it is predicted that consumers with low self efficacy have higher purchase intention than consumers with high self efficacy. In case of negative WOM, it is predicted that consumers with low self efficacy have lower purchase intention than consumers with high self efficacy. Emprical results support our prediction and four hypotheses derived from our conceptual framework are all accepted. This study suggest that the level of product involvement, consumer regulatory focus and the level of self-efficacy influence the consumer responses of the valence of online reviews. Therefore marketers need to manage online reviews based on the level of product involvement, regulatory focus orientation and the level of self-efficacy of target consumers.

  • PDF

A Study on the Critical Success Factors of Social Commerce through the Analysis of the Perception Gap between the Service Providers and the Users: Focused on Ticket Monster in Korea (서비스제공자와 사용자의 인식차이 분석을 통한 소셜커머스 핵심성공요인에 대한 연구: 한국의 티켓몬스터 중심으로)

  • Kim, Il Jung;Lee, Dae Chul;Lim, Gyoo Gun
    • Asia pacific journal of information systems
    • /
    • v.24 no.2
    • /
    • pp.211-232
    • /
    • 2014
  • Recently, there is a growing interest toward social commerce using SNS(Social Networking Service), and the size of its market is also expanding due to popularization of smart phones, tablet PCs and other smart devices. Accordingly, various studies have been attempted but it is shown that most of the previous studies have been conducted from perspectives of the users. The purpose of this study is to derive user-centered CSF(Critical Success Factor) of social commerce from the previous studies and analyze the CSF perception gap between social commerce service providers and users. The CSF perception gap between two groups shows that there is a difference between ideal images the service providers hope for and the actual image the service users have on social commerce companies. This study provides effective improvement directions for social commerce companies by presenting current business problems and its solution plans. For this, This study selected Korea's representative social commerce business Ticket Monster, which is dominant in sales and staff size together with its excellent funding power through M&A by stock exchange with the US social commerce business Living Social with Amazon.com as a shareholder in August, 2011, as a target group of social commerce service provider. we have gathered questionnaires from both service providers and the users from October 22, 2012 until October 31, 2012 to conduct an empirical analysis. We surveyed 160 service providers of Ticket Monster We also surveyed 160 social commerce users who have experienced in using Ticket Monster service. Out of 320 surveys, 20 questionaries which were unfit or undependable were discarded. Consequently the remaining 300(service provider 150, user 150)were used for this empirical study. The statistics were analyzed using SPSS 12.0. Implications of the empirical analysis result of this study are as follows: First of all, There are order differences in the importance of social commerce CSF between two groups. While service providers regard Price Economic as the most important CSF influencing purchasing intention, the users regard 'Trust' as the most important CSF influencing purchasing intention. This means that the service providers have to utilize the unique strong point of social commerce which make the customers be trusted rathe than just focusing on selling product at a discounted price. It means that service Providers need to enhance effective communication skills by using SNS and play a vital role as a trusted adviser who provides curation services and explains the value of products through information filtering. Also, they need to pay attention to preventing consumer damages from deceptive and false advertising. service providers have to create the detailed reward system in case of a consumer damages caused by above problems. It can make strong ties with customers. Second, both service providers and users tend to consider that social commerce CSF influencing purchasing intention are Price Economic, Utility, Trust, and Word of Mouth Effect. Accordingly, it can be learned that users are expecting the benefit from the aspect of prices and economy when using social commerce, and service providers should be able to suggest the individualized discount benefit through diverse methods using social network service. Looking into it from the aspect of usefulness, service providers are required to get users to be cognizant of time-saving, efficiency, and convenience when they are using social commerce. Therefore, it is necessary to increase the usefulness of social commerce through the introduction of a new management strategy, such as intensification of search engine of the Website, facilitation in payment through shopping basket, and package distribution. Trust, as mentioned before, is the most important variable in consumers' mind, so it should definitely be managed for sustainable management. If the trust in social commerce should fall due to consumers' damage case due to false and puffery advertising forgeries, it could have a negative influence on the image of the social commerce industry in general. Instead of advertising with famous celebrities and using a bombastic amount of money on marketing expenses, the social commerce industry should be able to use the word of mouth effect between users by making use of the social network service, the major marketing method of initial social commerce. The word of mouth effect occurring from consumers' spontaneous self-marketer's duty performance can bring not only reduction effect in advertising cost to a service provider but it can also prepare the basis of discounted price suggestion to consumers; in this context, the word of mouth effect should be managed as the CSF of social commerce. Third, Trade safety was not derived as one of the CSF. Recently, with e-commerce like social commerce and Internet shopping increasing in a variety of methods, the importance of trade safety on the Internet also increases, but in this study result, trade safety wasn't evaluated as CSF of social commerce by both groups. This study judges that it's because both service provider groups and user group are perceiving that there is a reliable PG(Payment Gateway) which acts for e-payment of Internet transaction. Accordingly, it is understood that both two groups feel that social commerce can have a corporate identity by website and differentiation in products and services in sales, but don't feel a big difference by business in case of e-payment system. In other words, trade safety should be perceived as natural, basic universal service. Fourth, it's necessary that service providers should intensify the communication with users by making use of social network service which is the major marketing method of social commerce and should be able to use the word of mouth effect between users. The word of mouth effect occurring from consumers' spontaneous self- marketer's duty performance can bring not only reduction effect in advertising cost to a service provider but it can also prepare the basis of discounted price suggestion to consumers. in this context, it is judged that the word of mouth effect should be managed as CSF of social commerce. In this paper, the characteristics of social commerce are limited as five independent variables, however, if an additional study is proceeded with more various independent variables, more in-depth study results will be derived. In addition, this research targets social commerce service providers and the users, however, in the consideration of the fact that social commerce is a two-sided market, drawing CSF through an analysis of perception gap between social commerce service providers and its advertisement clients would be worth to be dealt with in a follow-up study.

The Impacts of Need for Cognitive Closure, Psychological Wellbeing, and Social Factors on Impulse Purchasing (인지폐합수요(认知闭合需要), 심리건강화사회인소대충동구매적영향(心理健康和社会因素对冲动购买的影响))

  • Lee, Myong-Han;Schellhase, Ralf;Koo, Dong-Mo;Lee, Mi-Jeong
    • Journal of Global Scholars of Marketing Science
    • /
    • v.19 no.4
    • /
    • pp.44-56
    • /
    • 2009
  • Impulse purchasing is defined as an immediate purchase with no pre-shopping intentions. Previous studies of impulse buying have focused primarily on factors linked to marketing mix variables, situational factors, and consumer demographics and traits. In previous studies, marketing mix variables such as product category, product type, and atmospheric factors including advertising, coupons, sales events, promotional stimuli at the point of sale, and media format have been used to evaluate product information. Some authors have also focused on situational factors surrounding the consumer. Factors such as the availability of credit card usage, time available, transportability of the products, and the presence and number of shopping companions were found to have a positive impact on impulse buying and/or impulse tendency. Research has also been conducted to evaluate the effects of individual characteristics such as the age, gender, and educational level of the consumer, as well as perceived crowding, stimulation, and the need for touch, on impulse purchasing. In summary, previous studies have found that all products can be purchased impulsively (Vohs and Faber, 2007), that situational factors affect and/or at least facilitate impulse purchasing behavior, and that various individual traits are closely linked to impulse buying. The recent introduction of new distribution channels such as home shopping channels, discount stores, and Internet stores that are open 24 hours a day increases the probability of impulse purchasing. However, previous literature has focused predominantly on situational and marketing variables and thus studies that consider critical consumer characteristics are still lacking. To fill this gap in the literature, the present study builds on this third tradition of research and focuses on individual trait variables, which have rarely been studied. More specifically, the current study investigates whether impulse buying tendency has a positive impact on impulse buying behavior, and evaluates how consumer characteristics such as the need for cognitive closure (NFCC), psychological wellbeing, and susceptibility to interpersonal influences affect the tendency of consumers towards impulse buying. The survey results reveal that while consumer affective impulsivity has a strong positive impact on impulse buying behavior, cognitive impulsivity has no impact on impulse buying behavior. Furthermore, affective impulse buying tendency is driven by sub-components of NFCC such as decisiveness and discomfort with ambiguity, psychological wellbeing constructs such as environmental control and purpose in life, and by normative and informational influences. In addition, cognitive impulse tendency is driven by sub-components of NFCC such as decisiveness, discomfort with ambiguity, and close-mindedness, and the psychological wellbeing constructs of environmental control, as well as normative and informational influences. The present study has significant theoretical implications. First, affective impulsivity has a strong impact on impulse purchase behavior. Previous studies based on affectivity and flow theories proposed that low to moderate levels of impulsivity are driven by reduced self-control or a failure of self-regulatory mechanisms. The present study confirms the above proposition. Second, the present study also contributes to the literature by confirming that impulse buying tendency can be viewed as a two-dimensional concept with both affective and cognitive dimensions, and illustrates that impulse purchase behavior is explained mainly by affective impulsivity, not by cognitive impulsivity. Third, the current study accommodates new constructs such as psychological wellbeing and NFCC as potential influencing factors in the research model, thereby contributing to the existing literature. Fourth, by incorporating multi-dimensional concepts such as psychological wellbeing and NFCC, more diverse aspects of consumer information processing can be evaluated. Fifth, the current study also extends the existing literature by confirming the two competing routes of normative and informational influences. Normative influence occurs when individuals conform to the expectations of others or to enhance his/her self-image. Whereas informational influence occurs when individuals search for information from knowledgeable others or making inferences based upon observations of the behavior of others. The present study shows that these two competing routes of social influence can be attributed to different sources of influence power. The current study also has many practical implications. First, it suggests that people with affective impulsivity may be primary targets to whom companies should pay closer attention. Cultivating a more amenable and mood-elevating shopping environment will appeal to this segment. Second, the present results demonstrate that NFCC is closely related to the cognitive dimension of impulsivity. These people are driven by careless thoughts, not by feelings or excitement. Rational advertising at the point of purchase will attract these customers. Third, people susceptible to normative influences are another potential target market. Retailers and manufacturers could appeal to this segment by advertising their products and/or services as products that can be used to identify with or conform to the expectations of others in the aspiration group. However, retailers should avoid targeting people susceptible to informational influences as a segment market. These people are engaged in an extensive information search relevant to their purchase, and therefore more elaborate, long-term rational advertising messages, which can be internalized into these consumers' thought processes, will appeal to this segment. The current findings should be interpreted with caution for several reasons. The study used a small convenience sample, and only investigated behavior in two dimensions. Accordingly, future studies should incorporate a sample with more diverse characteristics and measure different aspects of behavior. Future studies should also investigate personality traits closely related to affectivity theories. Trait variables such as sensory curiosity, interpersonal curiosity, and atmospheric responsiveness are interesting areas for future investigation.

  • PDF

A Study on the Improvement of Recommendation Accuracy by Using Category Association Rule Mining (카테고리 연관 규칙 마이닝을 활용한 추천 정확도 향상 기법)

  • Lee, Dongwon
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.2
    • /
    • pp.27-42
    • /
    • 2020
  • Traditional companies with offline stores were unable to secure large display space due to the problems of cost. This limitation inevitably allowed limited kinds of products to be displayed on the shelves, which resulted in consumers being deprived of the opportunity to experience various items. Taking advantage of the virtual space called the Internet, online shopping goes beyond the limits of limitations in physical space of offline shopping and is now able to display numerous products on web pages that can satisfy consumers with a variety of needs. Paradoxically, however, this can also cause consumers to experience the difficulty of comparing and evaluating too many alternatives in their purchase decision-making process. As an effort to address this side effect, various kinds of consumer's purchase decision support systems have been studied, such as keyword-based item search service and recommender systems. These systems can reduce search time for items, prevent consumer from leaving while browsing, and contribute to the seller's increased sales. Among those systems, recommender systems based on association rule mining techniques can effectively detect interrelated products from transaction data such as orders. The association between products obtained by statistical analysis provides clues to predicting how interested consumers will be in another product. However, since its algorithm is based on the number of transactions, products not sold enough so far in the early days of launch may not be included in the list of recommendations even though they are highly likely to be sold. Such missing items may not have sufficient opportunities to be exposed to consumers to record sufficient sales, and then fall into a vicious cycle of a vicious cycle of declining sales and omission in the recommendation list. This situation is an inevitable outcome in situations in which recommendations are made based on past transaction histories, rather than on determining potential future sales possibilities. This study started with the idea that reflecting the means by which this potential possibility can be identified indirectly would help to select highly recommended products. In the light of the fact that the attributes of a product affect the consumer's purchasing decisions, this study was conducted to reflect them in the recommender systems. In other words, consumers who visit a product page have shown interest in the attributes of the product and would be also interested in other products with the same attributes. On such assumption, based on these attributes, the recommender system can select recommended products that can show a higher acceptance rate. Given that a category is one of the main attributes of a product, it can be a good indicator of not only direct associations between two items but also potential associations that have yet to be revealed. Based on this idea, the study devised a recommender system that reflects not only associations between products but also categories. Through regression analysis, two kinds of associations were combined to form a model that could predict the hit rate of recommendation. To evaluate the performance of the proposed model, another regression model was also developed based only on associations between products. Comparative experiments were designed to be similar to the environment in which products are actually recommended in online shopping malls. First, the association rules for all possible combinations of antecedent and consequent items were generated from the order data. Then, hit rates for each of the associated rules were predicted from the support and confidence that are calculated by each of the models. The comparative experiments using order data collected from an online shopping mall show that the recommendation accuracy can be improved by further reflecting not only the association between products but also categories in the recommendation of related products. The proposed model showed a 2 to 3 percent improvement in hit rates compared to the existing model. From a practical point of view, it is expected to have a positive effect on improving consumers' purchasing satisfaction and increasing sellers' sales.

Methodology for Identifying Issues of User Reviews from the Perspective of Evaluation Criteria: Focus on a Hotel Information Site (사용자 리뷰의 평가기준 별 이슈 식별 방법론: 호텔 리뷰 사이트를 중심으로)

  • Byun, Sungho;Lee, Donghoon;Kim, Namgyu
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.3
    • /
    • pp.23-43
    • /
    • 2016
  • As a result of the growth of Internet data and the rapid development of Internet technology, "big data" analysis has gained prominence as a major approach for evaluating and mining enormous data for various purposes. Especially, in recent years, people tend to share their experiences related to their leisure activities while also reviewing others' inputs concerning their activities. Therefore, by referring to others' leisure activity-related experiences, they are able to gather information that might guarantee them better leisure activities in the future. This phenomenon has appeared throughout many aspects of leisure activities such as movies, traveling, accommodation, and dining. Apart from blogs and social networking sites, many other websites provide a wealth of information related to leisure activities. Most of these websites provide information of each product in various formats depending on different purposes and perspectives. Generally, most of the websites provide the average ratings and detailed reviews of users who actually used products/services, and these ratings and reviews can actually support the decision of potential customers in purchasing the same products/services. However, the existing websites offering information on leisure activities only provide the rating and review based on one stage of a set of evaluation criteria. Therefore, to identify the main issue for each evaluation criterion as well as the characteristics of specific elements comprising each criterion, users have to read a large number of reviews. In particular, as most of the users search for the characteristics of the detailed elements for one or more specific evaluation criteria based on their priorities, they must spend a great deal of time and effort to obtain the desired information by reading more reviews and understanding the contents of such reviews. Although some websites break down the evaluation criteria and direct the user to input their reviews according to different levels of criteria, there exist excessive amounts of input sections that make the whole process inconvenient for the users. Further, problems may arise if a user does not follow the instructions for the input sections or fill in the wrong input sections. Finally, treating the evaluation criteria breakdown as a realistic alternative is difficult, because identifying all the detailed criteria for each evaluation criterion is a challenging task. For example, if a review about a certain hotel has been written, people tend to only write one-stage reviews for various components such as accessibility, rooms, services, or food. These might be the reviews for most frequently asked questions, such as distance between the nearest subway station or condition of the bathroom, but they still lack detailed information for these questions. In addition, in case a breakdown of the evaluation criteria was provided along with various input sections, the user might only fill in the evaluation criterion for accessibility or fill in the wrong information such as information regarding rooms in the evaluation criteria for accessibility. Thus, the reliability of the segmented review will be greatly reduced. In this study, we propose an approach to overcome the limitations of the existing leisure activity information websites, namely, (1) the reliability of reviews for each evaluation criteria and (2) the difficulty of identifying the detailed contents that make up the evaluation criteria. In our proposed methodology, we first identify the review content and construct the lexicon for each evaluation criterion by using the terms that are frequently used for each criterion. Next, the sentences in the review documents containing the terms in the constructed lexicon are decomposed into review units, which are then reconstructed by using the evaluation criteria. Finally, the issues of the constructed review units by evaluation criteria are derived and the summary results are provided. Apart from the derived issues, the review units are also provided. Therefore, this approach aims to help users save on time and effort, because they will only be reading the relevant information they need for each evaluation criterion rather than go through the entire text of review. Our proposed methodology is based on the topic modeling, which is being actively used in text analysis. The review is decomposed into sentence units rather than considering the whole review as a document unit. After being decomposed into individual review units, the review units are reorganized according to each evaluation criterion and then used in the subsequent analysis. This work largely differs from the existing topic modeling-based studies. In this paper, we collected 423 reviews from hotel information websites and decomposed these reviews into 4,860 review units. We then reorganized the review units according to six different evaluation criteria. By applying these review units in our methodology, the analysis results can be introduced, and the utility of proposed methodology can be demonstrated.

Context Sharing Framework Based on Time Dependent Metadata for Social News Service (소셜 뉴스를 위한 시간 종속적인 메타데이터 기반의 컨텍스트 공유 프레임워크)

  • Ga, Myung-Hyun;Oh, Kyeong-Jin;Hong, Myung-Duk;Jo, Geun-Sik
    • Journal of Intelligence and Information Systems
    • /
    • v.19 no.4
    • /
    • pp.39-53
    • /
    • 2013
  • The emergence of the internet technology and SNS has increased the information flow and has changed the way people to communicate from one-way to two-way communication. Users not only consume and share the information, they also can create and share it among their friends across the social network service. It also changes the Social Media behavior to become one of the most important communication tools which also includes Social TV. Social TV is a form which people can watch a TV program and at the same share any information or its content with friends through Social media. Social News is getting popular and also known as a Participatory Social Media. It creates influences on user interest through Internet to represent society issues and creates news credibility based on user's reputation. However, the conventional platforms in news services only focus on the news recommendation domain. Recent development in SNS has changed this landscape to allow user to share and disseminate the news. Conventional platform does not provide any special way for news to be share. Currently, Social News Service only allows user to access the entire news. Nonetheless, they cannot access partial of the contents which related to users interest. For example user only have interested to a partial of the news and share the content, it is still hard for them to do so. In worst cases users might understand the news in different context. To solve this, Social News Service must provide a method to provide additional information. For example, Yovisto known as an academic video searching service provided time dependent metadata from the video. User can search and watch partial of video content according to time dependent metadata. They also can share content with a friend in social media. Yovisto applies a method to divide or synchronize a video based whenever the slides presentation is changed to another page. However, we are not able to employs this method on news video since the news video is not incorporating with any power point slides presentation. Segmentation method is required to separate the news video and to creating time dependent metadata. In this work, In this paper, a time dependent metadata-based framework is proposed to segment news contents and to provide time dependent metadata so that user can use context information to communicate with their friends. The transcript of the news is divided by using the proposed story segmentation method. We provide a tag to represent the entire content of the news. And provide the sub tag to indicate the segmented news which includes the starting time of the news. The time dependent metadata helps user to track the news information. It also allows them to leave a comment on each segment of the news. User also may share the news based on time metadata as segmented news or as a whole. Therefore, it helps the user to understand the shared news. To demonstrate the performance, we evaluate the story segmentation accuracy and also the tag generation. For this purpose, we measured accuracy of the story segmentation through semantic similarity and compared to the benchmark algorithm. Experimental results show that the proposed method outperforms benchmark algorithms in terms of the accuracy of story segmentation. It is important to note that sub tag accuracy is the most important as a part of the proposed framework to share the specific news context with others. To extract a more accurate sub tags, we have created stop word list that is not related to the content of the news such as name of the anchor or reporter. And we applied to framework. We have analyzed the accuracy of tags and sub tags which represent the context of news. From the analysis, it seems that proposed framework is helpful to users for sharing their opinions with context information in Social media and Social news.

A Multimodal Profile Ensemble Approach to Development of Recommender Systems Using Big Data (빅데이터 기반 추천시스템 구현을 위한 다중 프로파일 앙상블 기법)

  • Kim, Minjeong;Cho, Yoonho
    • Journal of Intelligence and Information Systems
    • /
    • v.21 no.4
    • /
    • pp.93-110
    • /
    • 2015
  • The recommender system is a system which recommends products to the customers who are likely to be interested in. Based on automated information filtering technology, various recommender systems have been developed. Collaborative filtering (CF), one of the most successful recommendation algorithms, has been applied in a number of different domains such as recommending Web pages, books, movies, music and products. But, it has been known that CF has a critical shortcoming. CF finds neighbors whose preferences are like those of the target customer and recommends products those customers have most liked. Thus, CF works properly only when there's a sufficient number of ratings on common product from customers. When there's a shortage of customer ratings, CF makes the formation of a neighborhood inaccurate, thereby resulting in poor recommendations. To improve the performance of CF based recommender systems, most of the related studies have been focused on the development of novel algorithms under the assumption of using a single profile, which is created from user's rating information for items, purchase transactions, or Web access logs. With the advent of big data, companies got to collect more data and to use a variety of information with big size. So, many companies recognize it very importantly to utilize big data because it makes companies to improve their competitiveness and to create new value. In particular, on the rise is the issue of utilizing personal big data in the recommender system. It is why personal big data facilitate more accurate identification of the preferences or behaviors of users. The proposed recommendation methodology is as follows: First, multimodal user profiles are created from personal big data in order to grasp the preferences and behavior of users from various viewpoints. We derive five user profiles based on the personal information such as rating, site preference, demographic, Internet usage, and topic in text. Next, the similarity between users is calculated based on the profiles and then neighbors of users are found from the results. One of three ensemble approaches is applied to calculate the similarity. Each ensemble approach uses the similarity of combined profile, the average similarity of each profile, and the weighted average similarity of each profile, respectively. Finally, the products that people among the neighborhood prefer most to are recommended to the target users. For the experiments, we used the demographic data and a very large volume of Web log transaction for 5,000 panel users of a company that is specialized to analyzing ranks of Web sites. R and SAS E-miner was used to implement the proposed recommender system and to conduct the topic analysis using the keyword search, respectively. To evaluate the recommendation performance, we used 60% of data for training and 40% of data for test. The 5-fold cross validation was also conducted to enhance the reliability of our experiments. A widely used combination metric called F1 metric that gives equal weight to both recall and precision was employed for our evaluation. As the results of evaluation, the proposed methodology achieved the significant improvement over the single profile based CF algorithm. In particular, the ensemble approach using weighted average similarity shows the highest performance. That is, the rate of improvement in F1 is 16.9 percent for the ensemble approach using weighted average similarity and 8.1 percent for the ensemble approach using average similarity of each profile. From these results, we conclude that the multimodal profile ensemble approach is a viable solution to the problems encountered when there's a shortage of customer ratings. This study has significance in suggesting what kind of information could we use to create profile in the environment of big data and how could we combine and utilize them effectively. However, our methodology should be further studied to consider for its real-world application. We need to compare the differences in recommendation accuracy by applying the proposed method to different recommendation algorithms and then to identify which combination of them would show the best performance.

A Study of Performance Analysis on Effective Multiple Buffering and Packetizing Method of Multimedia Data for User-Demand Oriented RTSP Based Transmissions Between the PoC Box and a Terminal (PoC Box 단말의 RTSP 운용을 위한 사용자 요구 중심의 효율적인 다중 수신 버퍼링 기법 및 패킷화 방법에 대한 성능 분석에 관한 연구)

  • Bang, Ji-Woong;Kim, Dae-Won
    • Journal of Korea Multimedia Society
    • /
    • v.14 no.1
    • /
    • pp.54-75
    • /
    • 2011
  • PoC(Push-to-talk Over Cellular) is an integrated technology of group voice calls, video calls and internet based multimedia services. If a PoC user can not participate in the PoC session for various reasons such as an emergency situation, lack of battery capacity, then the user can use the PoC Box which has a similar functionality to the MM Box in the MMS(Multimedia Messaging Service). The RTSP(Real-Time Streaming Protocol) method is recommended to be used when there is a transmission session between the PoC box and a terminal. Since the existing VOD service uses a wired network, the packet size of RTSP-based VOD service is huge, however, the PoC service has wireless communication environments which have general characteristics to be used in RTSP method. Packet loss in a wired communication environments is relatively less than that in wireless communication environment, therefore, a buffering latency occurs in PoC service due to a play-out delay which means an asynchronous play of audio & video contents. Those problems make a user to be difficult to find the information they want when the media contents are played-out. In this paper, the following techniques and methods were proposed and their performance and superiority were verified through testing: cross-over dual reception buffering technique, advance partition multi-reception buffering technique, and on-demand multi-reception buffering technique, which are designed for effective picking up of information in media content being transmitted in short amount of time using RTSP when a user searches for media, as well as for reduction in playback delay; and same-priority packetization transmission method and priority-based packetization transmission method, which are media data packetization methods for transmission. From the simulation of functional evaluation, we could find that the proposed multiple receiving buffering and packetizing methods are superior, with respect to the media retrieval inclination, to the existing single receiving buffering method by 6-9 points from the viewpoint of effectiveness and excellence. Among them, especially, on-demand multiple receiving buffering technology with same-priority packetization transmission method is able to manage the media search inclination promptly to the requests of users by showing superiority of 3-24 points above compared to other combination methods. In addition, users could find the information they want much quickly since large amount of informations are received in a focused media retrieval period within a short time.

Analyzing the Issue Life Cycle by Mapping Inter-Period Issues (기간별 이슈 매핑을 통한 이슈 생명주기 분석 방법론)

  • Lim, Myungsu;Kim, Namgyu
    • Journal of Intelligence and Information Systems
    • /
    • v.20 no.4
    • /
    • pp.25-41
    • /
    • 2014
  • Recently, the number of social media users has increased rapidly because of the prevalence of smart devices. As a result, the amount of real-time data has been increasing exponentially, which, in turn, is generating more interest in using such data to create added value. For instance, several attempts are being made to analyze the relevant search keywords that are frequently used on new portal sites and the words that are regularly mentioned on various social media in order to identify social issues. The technique of "topic analysis" is employed in order to identify topics and themes from a large amount of text documents. As one of the most prevalent applications of topic analysis, the technique of issue tracking investigates changes in the social issues that are identified through topic analysis. Currently, traditional issue tracking is conducted by identifying the main topics of documents that cover an entire period at the same time and analyzing the occurrence of each topic by the period of occurrence. However, this traditional issue tracking approach has two limitations. First, when a new period is included, topic analysis must be repeated for all the documents of the entire period, rather than being conducted only on the new documents of the added period. This creates practical limitations in the form of significant time and cost burdens. Therefore, this traditional approach is difficult to apply in most applications that need to perform an analysis on the additional period. Second, the issue is not only generated and terminated constantly, but also one issue can sometimes be distributed into several issues or multiple issues can be integrated into one single issue. In other words, each issue is characterized by a life cycle that consists of the stages of creation, transition (merging and segmentation), and termination. The existing issue tracking methods do not address the connection and effect relationship between these issues. The purpose of this study is to overcome the two limitations of the existing issue tracking method, one being the limitation regarding the analysis method and the other being the limitation involving the lack of consideration of the changeability of the issues. Let us assume that we perform multiple topic analysis for each multiple period. Then it is essential to map issues of different periods in order to trace trend of issues. However, it is not easy to discover connection between issues of different periods because the issues derived for each period mutually contain heterogeneity. In this study, to overcome these limitations without having to analyze the entire period's documents simultaneously, the analysis can be performed independently for each period. In addition, we performed issue mapping to link the identified issues of each period. An integrated approach on each details period was presented, and the issue flow of the entire integrated period was depicted in this study. Thus, as the entire process of the issue life cycle, including the stages of creation, transition (merging and segmentation), and extinction, is identified and examined systematically, the changeability of the issues was analyzed in this study. The proposed methodology is highly efficient in terms of time and cost, as it sufficiently considered the changeability of the issues. Further, the results of this study can be used to adapt the methodology to a practical situation. By applying the proposed methodology to actual Internet news, the potential practical applications of the proposed methodology are analyzed. Consequently, the proposed methodology was able to extend the period of the analysis and it could follow the course of progress of each issue's life cycle. Further, this methodology can facilitate a clearer understanding of complex social phenomena using topic analysis.