The recent efforts in academia and industry represent a paradigm shift that will extend the IoT from the home environment so that it is interoperable with the Internet of Vehicles (IoV). IoV is a special kind of IoT. It allows to connect between vehicle and things located in infrastructure. Furthermore, IoV enable to create new intelligent services through collaboration with existing various services such as smart city and connected home. In this paper, we develop a service in order to realize IoV. To this end, we design a novel vehicle service platform which could automatical controlling the IoT device according to drivers' voice. To show practical usability of our proposed platform, we develop a prototype service could be call car-to-thing (C2T). We expect that our proposed platform could eventually contribute to realizing IoV.
Internet of Vehicles (IoV) is a subset of Internet of Things (IoT) and it is an infrastructure for vehicles. Therefore, IoV consists of three main network including inter-vehicle network, intra-vehicle network, and vehicular mobile internet. IoV mainly used in urban traffic environment to provide network access for drivers, passengers and traffic management. Accordingly, many research works have focused on network technology. But, recent concerted efforts in academia and industry point to paradigm shift in IoV system. In this paper, we proposed a knowledge base for intelligence service in IoV. A detailed design and implementation of the proposed knowledged base is illustrated. We hope this work will show power of IoV as a disruptive technology.
The business of Internet of Vehicles (IoV) is growing rapidly, and the large amount of data exchange has caused problems of large mobile network communication delay and large energy loss. A strategy for resource allocation of IoV communication based on mobile edge computing (MEC) is thus proposed. First, a model of the cloud-side collaborative cache and resource allocation system for the IoV is designed. Vehicles can offload tasks to MEC servers or neighboring vehicles for communication. Then, the communication model and the calculation model of IoV system are comprehensively analyzed. The optimization objective of minimizing delay and energy consumption is constructed. Finally, the on-board computing task is coded, and the optimization problem is transformed into a knapsack problem. The optimal resource allocation strategy is obtained through genetic algorithm. The simulation results based on the MATLAB platform show that: The proposed strategy offloads tasks to the MEC server or neighboring vehicles, making full use of system resources. In different situations, the energy consumption does not exceed 300 J and 180 J, with an average delay of 210 ms, effectively reducing system overhead and improving response speed.
Amir, Nur Afiqah Suzelan;Malip, Amizah;Othman, Wan Ainun Mior
KSII Transactions on Internet and Information Systems (TIIS)
/
제14권11호
/
pp.4573-4594
/
2020
Announcement protocol in Internet of Vehicles (IoV) is an intelligent application to enhance public safety, alleviate traffic jams and improve transportation quality. It requires communication between vehicles, roadside units and pedestrian to disseminate safety-related messages. However, as vehicles connected to internet, it makes them accessible globally to a potential adversary. Safety-related application requires a message to be reliable, however it may intrude the privacy of a vehicle. Contrarily, if some misbehaviour emerges, the malicious vehicles must be able to traceable and revoke from the network. This is a contradiction between privacy and accountability since the privacy of a user should be preserved. For a secure communication among intelligent entities, we propose a novel announcement protocol in IoV using group signature. To the best of our knowledge, our work is the first comprehensive construction of an announcement protocol in IoV that deploys group signature. We show that our protocol efficiently solves these conflicting security requirements of message reliability, privacy and accountability using 5G communication channel. The performance analysis and simulation results signify our work achieves performance efficiency in IoV communication.
본 논문은 블록체인 기술에서 탈중앙화된 시스템 접근 방식을 활용하여 차량 인터넷(IoV)에서 신뢰할 수 있는 데이터 공유 체계를 제안한다. 스마트 계약에 기초한 인센티브 메커니즘을 채택하여, 차량은 올바른 교통 정보 메시지를 정직하게 공유함으로써 시스템으로부터 특정한 보상을 받게 된다. 이후 차량은 평판 등급을 생성하여 수신되는 모든 정보 메세지를 검증함으로서 메시지에 대한 신뢰성을 유지한다. 한편 네트워크 성능을 분석하기 위해 이산 이벤트 시뮬레이터를 사용하여 IoT 네트워크를 시뮬레이션하였고, 인센티브 모델은 분산형 접근 방식의 이더리움 스마트 계약을 활용하여 설계하였다.
An efficient and reasonable resource allocation strategy can greatly improve the service quality of Internet of Vehicles (IoV). However, most of the current allocation methods have overestimation problem, and it is difficult to provide high-performance IoV network services. To solve this problem, this paper proposes a network resource allocation strategy based on deep learning network model DDQN. Firstly, the method implements the refined modeling of IoV model, including communication model, user layer computing model, edge layer offloading model, mobile model, etc., similar to the actual complex IoV application scenario. Then, the DDQN network model is used to calculate and solve the mathematical model of resource allocation. By decoupling the selection of target Q value action and the calculation of target Q value, the phenomenon of overestimation is avoided. It can provide higher-quality network services and ensure superior computing and processing performance in actual complex scenarios. Finally, simulation results show that the proposed method can maintain the network delay within 65 ms and show excellent network performance in high concurrency and complex scenes with task data volume of 500 kbits.
KSII Transactions on Internet and Information Systems (TIIS)
/
제18권6호
/
pp.1462-1477
/
2024
With the evolving complexity of connected vehicle features, the volume and diversity of data generated during driving continue to escalate. Enabling data sharing among interconnected vehicles holds promise for improving users' driving experiences and alleviating traffic congestion. Yet, the unintentional disclosure of users' private information through data sharing poses a risk, potentially compromising the interests of vehicle users and, in certain cases, endangering driving safety. Federated learning (FL) is a newly emerged distributed machine learning paradigm, which is expected to play a prominent role for privacy-preserving learning in autonomous vehicles. While FL holds significant potential to enhance the architecture of the Internet of Vehicles (IoV), the dynamic mobility of vehicles poses a considerable challenge to integrating FL with vehicular networks. In this paper, a novel clustered FL framework is proposed which is efficient for reducing communication and protecting data privacy. By assessing the similarity among feature vectors, vehicles are categorized into distinct clusters. An optimal vehicle is elected as the cluster head, which enhances the efficiency of personalized data processing and model training while reducing communication overhead. Simultaneously, the Local Differential Privacy (LDP) mechanism is incorporated during local training to safeguard vehicle privacy. The simulation results obtained from the 20newsgroups dataset and the MNIST dataset validate the effectiveness of the proposed scheme, indicating that the proposed scheme can ensure data privacy effectively while reducing communication overhead.
KSII Transactions on Internet and Information Systems (TIIS)
/
제18권2호
/
pp.327-347
/
2024
Edge computing is frequently employed in the Internet of Vehicles, although the computation and communication capabilities of roadside units with edge servers are limited. As a result, to perform distributed machine learning on resource-limited MEC systems, resources have to be allocated sensibly. This paper presents an Improved MADDPG algorithm to overcome the current IoV concerns of high delay and limited offloading utility. Firstly, we employ the MADDPG algorithm for task offloading. Secondly, the edge server aggregates the updated model and modifies the aggregation model parameters to achieve optimal policy learning. Finally, the new approach is contrasted with current reinforcement learning techniques. The simulation results show that compared with MADDPG and MAA2C algorithms, our algorithm improves offloading utility by 2% and 9%, and reduces delay by 29.6%.
최근 IT기술과 산업 간 융합이 활발한 가운데 자동차에도 각종 첨단 IT기술이 접목되면서 운전자의 안전과 편의성이 향상된 스마트카(smart car)가 속속 개발되고 있다. 가까운 미래에 스마트카의 도움으로 운전자가 전방주시 의무에서 자유롭게 될 수 있게 되면, 운행 중에 언제 어디서나 모바일 인터넷을 통한 정보접근이 가능하도록 지원하는 컴퓨팅 환경인 자동차 사물인터넷(Internet of Vehicles, Automotive IoT)이 중요하게 대두될 것으로 전망된다. 자동차 사물인터넷의 개념이 아직은 명확히 잡혀있지 않지만, 대체로 모바일 연결성(mobile connectivity)을 중심으로, 교통안전 혼잡해소뿐만 아니라 다양한 사용자 맞춤형 서비스 산업을 창출할 수 있는 컴퓨팅 환경을 의미한다. 즉, 운전자와 자동차, 자동차와 주변환경 및 교통인프라, 그리고 일상생활의 모든 요소가 자동차를 매개로 해서 유기적으로 연결되는 컴퓨팅 환경을 의미하며, 가까운 미래에 이런 컴퓨팅 환경을 지원하는 자동차가 상용화될 것으로 전망된다. 본고에서는 이러한 전망을 반영하여 자동차 사물인터넷 환경의 스마트카에 적용될 주요 기술과 서비스를 분석하고, 스마트카와 자율주행의 핵심기술인 인포테인먼트 플랫폼의 주요 동항 및 이슈를 살펴보고자 한다.
최근 지능화된 사물들이 연결되는 네트워크를 통해 사람과 사물, 사물과 사물 간에 상호 소통하고 상황인식 기반의 지식이 결합되어 인공지능 서비스를 제공하는 사물인터넷 (IoT : Internet of Things) 환경이 급속도로 발전하고 있다. 이러한 사물인터넷의 발전과 더불어 C-ITS (Cooperative Intelligent Transport System) 환경에서 고속으로 이동하는 차량이 기존의 노변 인프라 외에 주행 중인 다른 차량까지 교통 인프라에 포함하여 차선 및 번호판 인식, 전방 사고 및 도로 공사 감지 등 쌍방향 정보 공유를 통해 효율적인 도로 주행을 함으로써 운전자에게 편리성과 안전성을 높여주고 나아가 교통 효율성을 높이고자 하는 연구가 활발히 진행되고 있다. 본 논문에서는 C-ITS 환경에서 고속도로 주행 시 버스전용 차선 인식 후 교통 인프라와 연계하여 버스전용 차선 내 주행차량의 주행 가능 여부를 판단하고 이에 따른 후속 조치에 관한 연구를 진행하였다. 버스전용차선 인식을 통해 버스전용 차로의 위치를 파악한 후 후속 차량의 정면 전방 및 측면 전방 차량의 번호판 인식을 진행하고 향후 교통 인프라로 하여금 인지하게 하는 방법에 관한 학습과 해당 실험결과를 제시하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.