• Title/Summary/Keyword: Internet of Things sensor

Search Result 494, Processing Time 0.023 seconds

Design of Hardware(Hacker Board) for IoT Security Education Utilizing Dual MCUs (이중 MCU를 활용한 IoT 보안 교육용 하드웨어(해커보드) 설계)

  • Dong-Won Kim
    • Convergence Security Journal
    • /
    • v.24 no.1
    • /
    • pp.43-49
    • /
    • 2024
  • The convergence of education and technology has been emphasized, leading to the application of educational technology (EdTech) in the field of education. EdTech provides learner-centered, customized learning environments through various media and learning situations. In this paper, we designed hardware for EdTech-based educational tools for IoT security education in the field of cybersecurity education. The hardware is based on a dual microcontroller unit (MCU) within a single board, allowing for both attack and defense to be performed. To leverage various sensors in the Internet of Things (IoT), the hardware is modularly designed. From an educational perspective, utilizing EdTech in cybersecurity education enhances engagement by incorporating tangible physical teaching aids. The proposed research suggests that the design of IoT security education hardware can serve as a reference for simplifying the creation of a security education environment for embedded hardware, software, sensor networks, and other areas that are challenging to address in traditional education..

IoT Based Office Environment Improvement Plan - Focusing on Office Relocation Applying Block Stacking Principle - (사물인터넷 기반 사무환경개선방안 -블록 스태킹 원리를 적용한 사무실 재배치를 중심으로-)

  • Park, Kwang-Chul;Suh, Dong-Hyok
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.1
    • /
    • pp.61-70
    • /
    • 2020
  • In this study, the IOT-based desk layout method was proposed to complement the existing seating method and to improve the work efficiency. The IoT system for the desk layout needs determining the function, type and network protocol of the sensor to find out the working status of the desk to reasonably assist the worker's seat placement. A collection method was proposed. The algorithm used in Block Stacking was used when deciding how to allocate seats using the acquired data. As a result, we could suggest an arithmetic basis for rational desk layout in IoT environment and show that it can be applied to an advanced flexible seating system based on working type in addition to the preferences of employees in the future.

Building Fire Monitoring and Escape Navigation System Based on AR and IoT Technologies (AR과 IoT 기술을 기반으로 한 건물 화재 모니터링 및 탈출 내비게이션 시스템)

  • Wentao Wang;Seung-Yong Lee;Sanghun Park;Seung-Hyun Yoon
    • Journal of the Korea Computer Graphics Society
    • /
    • v.30 no.3
    • /
    • pp.159-169
    • /
    • 2024
  • This paper proposes a new real-time fire monitoring and evacuation navigation system by integrating Augmented Reality (AR) technology with Internet of Things (IoT) technology. The proposed system collects temperature data through IoT temperature measurement devices installed in buildings and automatically transmits it to a MySQL cloud database via an IoT platform, enabling real-time and accurate data monitoring. Subsequently, the real-time IoT data is visualized on a 3D building model generated through Building Information Modeling (BIM), and the model is represented in the real world using AR technology, allowing intuitive identification of the fire origin. Furthermore, by utilizing Vuforia engine's Device Tracking and Area Targets features, the system tracks the user's real-time location and employs an enhanced A* algorithm to find the optimal evacuation route among multiple exits. The paper evaluates the proposed system's practicality and demonstrates its effectiveness in rapid and safe evacuation through user experiments based on various virtual fire scenarios.

Design of Convergence Platform for companion animal Personalized Services (반려동물 개인화서비스를 위한 융합 플랫폼 설계)

  • Kim, Sam-Taek
    • Journal of the Korea Convergence Society
    • /
    • v.7 no.6
    • /
    • pp.29-34
    • /
    • 2016
  • Nowadays, real-time devices that provide health care for a companion animal is being developed by IoT technology and its demand such as smart puppy tag is increasing. However, it is difficult for IoT devices of companion animals to process complex nature due to miniaturized hardware and constructive nature. There is a clear limit to custom advanced features like health care implementation. This paper designs an integrated platform with statistical analysis which makes it possible to customized services such as feed production, pharmaceutical production, and health care for each companion animal. Middleware that collects sensor information, customer's spending pattern and information from Social Network Service is also designed by making use of IoT devices which companion animals wear. Furthermore, the paper designed data analyzer which analyzes and refines data from collected information that can be applied to personalized services.

Channel Selection Using Optimal Channel-Selection Policy in RF Energy Harvesting Cognitive Radio Networks (무선 에너지 하비스팅 인지 무선 네트워크에서 최적의 채널 선택 정책을 이용한 채널 선택)

  • Jung, Jun Hee;Hwang, Yu Min;Cha, Gyeong Hyeon;Kim, Jin Young
    • Journal of Satellite, Information and Communications
    • /
    • v.10 no.3
    • /
    • pp.1-5
    • /
    • 2015
  • Recently, RF energy harvesting technology is a promising technology for small-size IoT(Internet of Things) devices such as sensor to resolve battery scarcity problem. When applied to existing cognitive radio networks, this technology can be expected to increase network throughput through the increase of cognitive user's operating time. This paper proposes a optimal channel-selection policy for RF energy harvesting CR networks model where cognitive users in harvesting zone harvest ambient RF energy from transmission by nearby active primary users and the others in non-harvesting zone choose the channel and communicate with their receiver. We consider that primary users and secondary users are distributed as Poisson point processes and contact with their intended receivers at fixed distances. Finally we can derive the optimal frame duration, transmission power and density of secondary user from the proposed model that can maximize the secondary users's throughput under the given several conditions and suggest future directions of research.

Implementation of Integrated Platform of Face Recognition CCTV and Home IOT (안면인식 CCTV와 홈 IOT의 통합 플랫폼 구현)

  • Ahn, Eun-Mo;Kim, Dong-Hoi
    • Journal of Digital Contents Society
    • /
    • v.19 no.2
    • /
    • pp.393-399
    • /
    • 2018
  • As the existing face recognition CCTV and home IOT have each individual hardware component, they have a disadvantage that the measured results of their sensors and the CCTV can not be viewed on one screen at a time. In order to overcome the above disadvantages of existing CCTV and home IOT, this paper proposes an integrated platform which constitutes the CCTV and home IOT as one hardware component using Raspberry Pi and shows each result on one screen through Smartphone application. The proposed integrated platform CCTV and home IOT system is a system which can run the application as a Smartphone and check the sensor value measured by Raspberry Pi and the picture taken through the Pi camera. The implemented system measures temperature, humidity, gas, and dust, and implements face recognition technology on a screen shot through a Pi camera, allowing it to be seen at a glance with a Smartphone.

Intelligent Bridge Safety Prediction Edge System (지능형 교량 안전성 예측 엣지 시스템)

  • Jinhyo Park;Taejin Lee;Yong-Geun Hong;Joosang Youn
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.12 no.12
    • /
    • pp.357-362
    • /
    • 2023
  • Bridges are important transportation infrastructure, but they are subject to damage and cracking due to various environmental factors and constant traffic loads, which accelerate their aging. With many bridges now older than their original construction, there is a need for systems to ensure safety and diagnose deterioration. Bridges are already utilizing structural health monitoring (SHM) technology to monitor the condition of bridges in real time or periodically. Along with this technology, the development of intelligent bridge monitoring technology utilizing artificial intelligence and Internet of Things technology is underway. In this paper, we study an edge system technique for predicting bridge safety using fast Fourier transform and dimensionality reduction algorithm for maintenance of aging bridges. In particular, unlike previous studies, we investigate whether it is possible to form a dataset using sensor data collected from actual bridges and check the safety of bridges.

Design and Function Analysis of Dust Measurement Platform based on IoT protocol (사물인터넷 프로토콜 기반의 미세먼지 측정 플랫폼 설계와 기능해석)

  • Cho, Youngchan;Kim, Jeongho
    • Journal of Platform Technology
    • /
    • v.9 no.4
    • /
    • pp.79-89
    • /
    • 2021
  • In this paper, the fine dust (PM10) and ultrafine dust (PM2.5) measurement platforms are designed to be mobile and fixed using oneM2M, the international standard for IoT. The fine dust measurement platform is composed and designed with a fine dust measurement device, agent, oneM2M platform, oneM2M IPE, and monitoring system. The main difference between mobile and fixed is that the mobile uses the MQTT protocol for interconnection between devices and services without blind spots based on LTE connection, and the fixed uses the LoRaWAN protocol with low power and wide communication range. Not only fine dust, but also temperature, humidity, atmospheric pressure, volatile organic compounds (VOC), carbon monoxide (CO), sulfur dioxide (SO2), nitrogen dioxide (NO2), and noise data related to daily life were collected. The collected sensor values were managed using the common API provided by oneM2M through the agent and oneM2M IPE, and it was designed into four resource types: AE and container. Six functions of operability, flexibility, convenience, safety, reusability, and scalability were analyzed through the fine dust measurement platform design.

Smart Device based ECG Sensing IoT Applications (스마트 디바이스 기반 ECG 감지 IoT 응용 서비스에 관한 연구)

  • Mariappan, Vinayagam;Lee, Seungyoun;Lee, Junghoon;Lee, Juyoung;Cha, Jaesang
    • Journal of Satellite, Information and Communications
    • /
    • v.11 no.3
    • /
    • pp.18-23
    • /
    • 2016
  • Internet of things (IoT) is revolutionizing in the patient-Centered medical monitoring and management by authorizing the Smartphone application and data analysis with medical centers. The network connectivity is basic requirement to collect the observed human beings' health information from Smartphone to monitor the health from IoT medical devices in personal healthcare. The IoT environment built in Smartphone is very effective and does not demand infrastructure. This paper presents the smart phone deployed personal IoT architecture for Non-Invasive ECG Capturing. The adaptable IoT medical device cum Gateway is used for personal healthcare with big data storage on cloud configuration. In this approach, the Smartphone camera based imaging technique used to extract the personal ECG waveform and forward it to the cloud based big data storage connectivity using IoT architecture. Elaborated algorithm allows for efficient ECG registration directly from face image captured from Smartphone or Tablet camera. The profound technique may have an exceptional value in monitoring personal healthcare after adequate enhancements are introduced.

A Study on the Livestock Feed Measuring Sensor and Supply Management System Implementation based on the IoT (IoT 기반의 축산사료 측정 장치 및 사료 공급 시스템 구현)

  • An, Wonyoung;Chang, YunHi
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.10 no.5
    • /
    • pp.442-454
    • /
    • 2017
  • As the demand for meat products has steadily increased in Korea, so the livestock industry has full grown. However, the opening of import meat products is taking a toll on the local industry. Cost reduction on livestock feed, which comprises the majority of costs involved in the industry is urgent to gain a competitive edge. As Internet of Things (IoT) technologies are being applied across a multiple of industries, so are the cases of applied Smart Farm technology for efficient production. The following research aims to utilize IoT technologies to measure, in real time, the rate of depletion of feed and remaining amount and to propose an effective automated reorder & delivery system. First, a method of utilization of ultrasonic and temperature/humidity sensors to obtain corresponding data of remaining feed in the Feedbin is proposed. In addition, a method of sending the obtained data via on-the-farm gateway to Supply Chain Management (SCM) servers is proposed. Finally, utilization of the stored data to construct an automated reorder & delivery service system is proposed. It is in the researcher's intention to contribute to and enable the local livestock industry with the application of various IoT services.