• Title/Summary/Keyword: Internet of Energy

Search Result 1,245, Processing Time 0.03 seconds

Performance Evaluation of the RIX-MAC Protocol for Wireless Sensor Networks

  • Kim, Taekon;Lee, Hyungkeun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.2
    • /
    • pp.764-784
    • /
    • 2017
  • Energy efficiency is an essential requirement in designing a MAC protocol for wireless sensor networks (WSNs) using battery-operated sensor nodes. We proposed a new receiver-initiated MAC protocol, RIX-MAC, based on the X-MAX protocol with asynchronous duty cycles. In this paper, we analyzed the performance of RIX-MAC protocol in terms of throughput, delay, and energy consumption using the model. For modeling the protocol, we used the Markov chain model, derived the transmission and state probabilities, and obtained the equations to solve the performance of throughput, delay, and energy consumption. Our proposed model and analysis are validated by comparing numerical results obtained from the model, with simulation results using NS-2.

Classification of Phornographic Videos Based on the Audio Information (오디오 신호에 기반한 음란 동영상 판별)

  • Kim, Bong-Wan;Choi, Dae-Lim;Lee, Yong-Ju
    • MALSORI
    • /
    • no.63
    • /
    • pp.139-151
    • /
    • 2007
  • As the Internet becomes prevalent in our lives, harmful contents, such as phornographic videos, have been increasing on the Internet, which has become a very serious problem. To prevent such an event, there are many filtering systems mainly based on the keyword-or image-based methods. The main purpose of this paper is to devise a system that classifies pornographic videos based on the audio information. We use the mel-cepstrum modulation energy (MCME) which is a modulation energy calculated on the time trajectory of the mel-frequency cepstral coefficients (MFCC) as well as the MFCC as the feature vector. For the classifier, we use the well-known Gaussian mixture model (GMM). The experimental results showed that the proposed system effectively classified 98.3% of pornographic data and 99.8% of non-pornographic data. We expect the proposed method can be applied to the more accurate classification system which uses both video and audio information.

  • PDF

Energy-efficient Power Allocation based on worst-case performance optimization under channel uncertainties

  • Song, Xin;Dong, Li;Huang, Xue;Qin, Lei;Han, Xiuwei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.11
    • /
    • pp.4595-4610
    • /
    • 2020
  • In the practical communication environment, the accurate channel state information (CSI) is difficult to obtain, which will cause the mismatch of resource and degrade the system performance. In this paper, to account for the channel uncertainties, a robust power allocation scheme for a downlink Non-orthogonal multiple access (NOMA) heterogeneous network (HetNet) is designed to maximize energy efficiency (EE), which can ensure the quality of service (QoS) of users. We conduct the robust optimization model based on worse-case method, in which the channel gains belong to certain ellipsoid sets. To solve the non-convex non-liner optimization, we transform the optimization problem via Dinkelbach method and sequential convex programming, and the power allocation of small cell users (SCUs) is achieved by Lagrange dual approach. Finally, we analysis the convergence performance of proposed scheme. The simulation results demonstrate that the proposed algorithm can improve total EE of SCUs, and has a fast convergence performance.

MCRO-ECP: Mutation Chemical Reaction Optimization based Energy Efficient Clustering Protocol for Wireless Sensor Networks

  • Daniel, Ravuri;Rao, Kuda Nageswara
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.7
    • /
    • pp.3494-3510
    • /
    • 2019
  • Wireless sensor networks encounter energy saving as a major issue as the sensor nodes having no rechargeable batteries and also the resources are limited. Clustering of sensors play a pivotal role in energy saving of the deployed sensor nodes. However, in the cluster based wireless sensor network, the cluster heads tend to consume more energy for additional functions such as reception of data, aggregation and transmission of the received data to the base station. So, careful selection of cluster head and formation of cluster plays vital role in energy conservation and enhancement of lifetime of the wireless sensor networks. This study proposes a new mutation chemical reaction optimization (MCRO) which is an algorithm based energy efficient clustering protocol termed as MCRO-ECP, for wireless sensor networks. The proposed protocol is extensively developed with effective methods such as potential energy function and molecular structure encoding for cluster head selection and cluster formation. While developing potential functions for energy conservation, the following parameters are taken into account: neighbor node distance, base station distance, ratio of energy, intra-cluster distance, and CH node degree to make the MCRO-ECP protocol to be potential energy conserver. The proposed protocol is studied extensively and tested elaborately on NS2.35 Simulator under various senarios like varying the number of sensor nodes and CHs. A comparative study between the simulation results derived from the proposed MCRO-ECP protocol and the results of the already existing protocol, shows that MCRO-ECP protocol produces significantly better results in energy conservation, increase network life time, packets received by the BS and the convergence rate.

An Energy-Efficient Transmission Strategy for Wireless Sensor Networks (무선 센서 네트워크에서 에너지 효율적인 전송 방안에 관한 연구)

  • Phan, Van Ca;Kim, Jeong-Geun
    • Journal of Internet Computing and Services
    • /
    • v.10 no.3
    • /
    • pp.85-94
    • /
    • 2009
  • In this work we propose an energy-efficient transmission strategy for wireless sensor networks that operate in a strict energy-constrained environment. Our transmission algorithm consists of two components: a binary-decision based transmission and a channel-aware backoff adjustment. In the binary-decision based transmission, we obtain the optimum threshold for successful transmission via Markov decision process (MDP) formulation. A channel-aware backoff adjustment, the second component of our proposal, is introduced to favor sensor nodes seeing better channel in terms of transmission priority. Extensive simulations are performed to verify the performance of our proposal over fading wireless channels.

  • PDF

Cost-Efficient Framework for Mobile Video Streaming using Multi-Path TCP

  • Lim, Yeon-sup
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.4
    • /
    • pp.1249-1265
    • /
    • 2022
  • Video streaming has become one of the most popular applications for mobile devices. The network bandwidth required for video streaming continues to exponentially increase as video quality increases and the user base grows. Multi-Path TCP (MPTCP), which allows devices to communicate simultaneously through multiple network interfaces, is one of the solutions for providing robust and reliable streaming of such high-definition video. However, mobile video streaming over MPTCP raises new concerns, e.g., power consumption and cellular data usage, since mobile device resources are constrained, and users prefer to minimize such costs. In this work, we propose a mobile video streaming framework over MPTCP (mDASH) to reduce the costs of energy and cellular data usage while preserving feasible streaming quality. Our evaluation results show that by utilizing knowledge about video behavior, mDASH can reduce energy consumption by up to around 20%, and cellular usage by 15% points, with minimal quality degradation.

Educational Algorithm to train Renewable Energy Technician (신재생에너지 전문기술 인력양성 교육 알고리즘)

  • Yoon, Yongho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.2
    • /
    • pp.271-276
    • /
    • 2020
  • In terms of supply of manpower in the energy industry, domestic universities cannot realistically operate flexibly to meet manpower demand in accordance with various regulations related to the department, and there are only a few independent energy related departments. There are many difficulties in closure, increase and decrease of capacity, and foster convergence. In addition to the limited aspects of human resource development of universities, changes in the energy paradigm, namely: 1) changes in the energy industry from stable supply and energy security to new growth engines and export industries, 2) Revitalization of the energy industry, 3) including diversification of energy sources and the spread of new technologies. Therefore, in this paper, we propose a training program for nurturing new renewable energy specialists to independently develop various high-quality human resources such as intangible and convergent human resources in line with changes in the energy paradigm.

Information System of Smart u-LED Lighting Energy based on Zigbee Mesh Network (지그비 메쉬 망 기반 스마트 u-LED 전력제어 시스템)

  • Kim, Sam-Taek
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.13 no.5
    • /
    • pp.77-83
    • /
    • 2013
  • Nowadays, the limitation of Lighting control and management skills is the excessive cost of equipments, the operational difficulties and wasting energy. To solve this problem is in need of communication and management S/W that is worked out complexly well as a information system of smart lighting energy, which is loaded wireless network facility. This paper made a study od the energy saving technology through energy monitoring and we developed LEIS(Lighting Energy Information Sysem) to converge this one. LEIS is monitoring and control lighting energy data that is collelcted from sensors by Zigbee mesh network and shows lighting use information by visualization to users. It is consists of lighting energy information data base based on LEM(Lighting Energy Metering) information and LEIS Web application, provide function scenario to manage energy optimization through LEIS.

Multi-Attribute Data Fusion for Energy Equilibrium Routing in Wireless Sensor Networks

  • Lin, Kai;Wang, Lei;Li, Keqiu;Shu, Lei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.4 no.1
    • /
    • pp.5-24
    • /
    • 2010
  • Data fusion is an attractive technology because it allows various trade-offs related to performance metrics, e.g., energy, latency, accuracy, fault-tolerance and security in wireless sensor networks (WSNs). Under a complicated environment, each sensor node must be equipped with more than one type of sensor module to monitor multi-targets, so that the complexity for the fusion process is increased due to the existence of various physical attributes. In this paper, we first investigate the process and performance of multi-attribute fusion in data gathering of WSNs, and then propose a self-adaptive threshold method to balance the different change rates of each attributive data. Furthermore, we present a method to measure the energy-conservation efficiency of multi-attribute fusion. Based on our proposed methods, we design a novel energy equilibrium routing method for WSNs, viz., multi-attribute fusion tree (MAFT). Simulation results demonstrate that MAFT achieves very good performance in terms of the network lifetime.

Optimal Energy-Efficient Power Allocation and Outage Performance Analysis for Cognitive Multi-Antenna Relay Network Using Physical-Layer Network Coding

  • Liu, Jia;Zhu, Ying;Kang, GuiXia;Zhang, YiFan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.12
    • /
    • pp.3018-3036
    • /
    • 2013
  • In this paper, we investigate power allocation scheme and outage performance for a physical-layer network coding (PNC) relay based secondary user (SU) communication in cognitive multi-antenna relay networks (CMRNs), in which two secondary transceivers exchange their information via a multi-antenna relay using PNC protocol. We propose an optimal energy-efficient power allocation (OE-PA) scheme to minimize total energy consumption per bit under the sum rate constraint and interference power threshold (IPT) constraints. A closed-form solution for optimal allocation of transmit power among the SU nodes, as well as the outage probability of the cognitive relay system, are then derived analytically and confirmed by numerical results. Numerical simulations demonstrate the PNC protocol has superiority in energy efficiency performance over conventional direct transmission protocol and Four-Time-Slot (4TS) Decode-and-Forward (DF) relay protocol, and the proposed system has the optimal outage performance when the relay is located at the center of two secondary transceivers.