Journal of Korean Home Economics Education Association
/
v.16
no.3
/
pp.63-80
/
2004
The purpose of this study was to investigate the actual ICT utilization and recognition, to identify the effective and relevant chapters of home economics which can be taught using ICT in teaching and learning method. There were 372 secondary school teachers being participated in the survey. The results of this study can be summarized as follows 1. The reason why they have ICT utilization Instruction is to help the learners improve the academic accomplishment in the development stage through providing data from web-surfing and presentational data such as developed CD, animation and presentations. 2. Regarding ICT utilization capability. teachers have the capability to send and receive E-mail, make a presentation data. practical use of Internet. In addition, the group with less than 10 years experience have a higher capability in information technology. 3. Concerning ICT utilization recognition, this result shows that ICT Instruction is the most effective to motivate learners, and teachers anticipate ICT Instruction would improve the quality of the teaching & learning. 4. The chapter such as 'how to make clothing and recycling'(database). 'the foundation of cooking and its application' (database). 'gender and acquaintance of the opposite sex', 'nutrition of during adolescence' (simulation program) should be the first priority in the development.
There are many difficulties to develop a mobile contents due to many constraints on mobile environments. It is difficult to make a good mobile contents with only visual reduction of existing contents on wire Internet. Therefore, it is essential to devise the data representation and to develop the authoring tool to meet the needs of the mobile contents market. We suggest the compact mobile contents to learn Chinese characters and developed its authoring tool. The animation which our system produces is realistic as if someone writes letters with pen or brush. Moreover, our authoring tool makes a user generate a Chinese character animation easily and rapidly although she or he has not many knowledge in computer graphics, mobile programming or Chinese characters. The method to generate the stroke animation is following: We take basic character shape information represented with several contours from TTF(TrueType Font) and get the information for the stroke segmentation and stroke ordering from simple user input. And then, we decompose whole character shape into some strokes by using polygonal approximation technique. Next, the stroke animation for each stroke is automatically generated by the scan line algorithm ordered by the stroke direction. Finally, the ordered scan lines are compressed into some integers by reducing coordinate redundancy As a result, the stroke animation of our system is even smaller than GIF animation. Our method can be extended to rendering and animation of Hangul or general 2D shape based on vector graphics. We have the plan to find the method to automate the stroke segmentation and ordering without user input.
With the recent increase of the interest in IoT in almost all areas of industry, computing technologies have been increasingly applied in human environments such as houses, buildings, cars, and streets; in these IoT environments, speech recognition is being widely accepted as a means of HCI. The existing server-based speech recognition techniques are typically fast and show quite high recognition rates; however, an internet connection is necessary, and complicated server computing is required because a voice is recognized by units of words that are stored in server databases. This paper, as a successive research results of speech recognition algorithms for the Korean phonemic vowel 'ㅏ', 'ㅓ', suggests an implementation of speech recognition algorithms for the Korean phonemic vowel 'ㅣ'. We observed that almost all of the vocal waveform patterns for 'ㅣ' are unique and different when compared with the patterns of the 'ㅏ' and 'ㅓ' waveforms. In this paper we propose specific waveform patterns for the Korean vowel 'ㅣ' and the corresponding recognition algorithms. We also presents experiment results showing that, by adding neural-network learning to our algorithm, the voice recognition success rate for the vowel 'ㅣ' can be increased. As a result we observed that 90% or more of the vocal expressions of the vowel 'ㅣ' can be successfully recognized when our algorithms are used.
Text filtering is a task of deciding whether a document has relevance to a specified topic. As Internet and Web becomes wide-spread and the number of documents delivered by e-mail explosively grows the importance of text filtering increases as well. The aim of this paper is to improve the accuracy of text filtering systems by using machine learning techniques. We apply AdaBoost algorithms to the filtering task. An AdaBoost algorithm generates and combines a series of simple hypotheses. Each of the hypotheses decides the relevance of a document to a topic on the basis of whether or not the document includes a certain word. We begin with an existing AdaBoost algorithm which uses weak hypotheses with their output of 1 or -1. Then we extend the algorithm to use weak hypotheses with real-valued outputs which was proposed recently to improve error reduction rates and final filtering performance. Next, we attempt to achieve further improvement in the AdaBoost's performance by first setting weights randomly according to the continuous Poisson distribution, executing AdaBoost, repeating these steps several times, and then combining all the hypotheses learned. This has the effect of mitigating the ovefitting problem which may occur when learning from a small number of data. Experiments have been performed on the real document collections used in TREC-8, a well-established text retrieval contest. This dataset includes Financial Times articles from 1992 to 1994. The experimental results show that AdaBoost with real-valued hypotheses outperforms AdaBoost with binary-valued hypotheses, and that AdaBoost iterated with random weights further improves filtering accuracy. Comparison results of all the participants of the TREC-8 filtering task are also provided.
In the cloud environment, IoT devices using sensors and wearable devices are being applied in various environments, and technologies that accurately determine the information generated by IoT devices are being actively studied. However, due to limitations in the IoT environment such as power and security, information generated by IoT devices is very weak, so financial damage and human casualties are increasing. To accurately collect and analyze IoT information, this paper proposes a topographic information-based key management technique that considers IoT information errors. The proposed technique allows IoT layout errors and groups topographic information into groups of dogs in order to secure connectivity of IoT devices in the event of arbitrary deployment of IoT devices in the cloud environment. In particular, each grouped terrain information is assigned random selected keys from the entire key pool, and the key of the terrain information contained in the IoT information and the probability-high key values are secured with the connectivity of the IoT device. In particular, the proposed technique can reduce information errors about IoT devices because the key of IoT terrain information is extracted by seed using probabilistic deep learning.
Recently, as the number of Internet users are growing explosively, e-learning has been applied spread, as well as remote evaluation of intellectual capacity However, only the multiple choice and/or the objective tests have been applied to the e-learning, because of difficulty of natural language processing. For the intelligent marking of short-essay typed answer papers with rapidness and fairness, this work utilize heterogenous linguistic knowledges. Firstly, we construct the semantic kernel from un tagged corpus. Then the answer papers of students and instructors are transformed into the vector form. Finally, we evaluate the similarity between the papers by using the semantic kernel and decide whether the answer paper is correct or not, based on the similarity values. For the construction of the semantic kernel, we used latent semantic analysis based on the vector space model. Further we try to reduce the problem of information shortage, by integrating Korean Word Net. For the construction of the semantic kernel we collected 38,727 newspaper articles and extracted 75,175 indexed terms. In the experiment, about 0.894 correlation coefficient value, between the marking results from this system and the human instructors, was acquired.
With rapidly developing Internet applications, an e-mail has been considered as one of the most popular methods for exchanging information. The e-mail, however, has a serious problem that users ran receive a lot of unwanted e-mails, what we called, spam mails, which cause big problems economically as well as socially. In order to block and filter out the spam mails, many researchers and companies have performed many sorts of research on spam filtering. In general, users of e-mail have different criteria on deciding if an e-mail is spam or not. Furthermore, in e-mail client systems, users do different actions according to a spam mail or not. In this paper, we propose a mail filtering system using such user actions. The proposed system consists of two steps: One is an action inference step to draw user actions from an e-mail and the other is a mail classification step to decide if the e-mail is spam or not. All the two steps use incremental learning, of which an algorithm is IB2 of TiMBL. To evaluate the proposed system, we collect 12,000 mails of 12 persons. The accuracy is $81{\sim}93%$ according to each person. The proposed system outperforms, at about 14% on the average, a system that does not use any information about user actions.
Journal of the Korea Academia-Industrial cooperation Society
/
v.20
no.8
/
pp.295-302
/
2019
This study was conducted to investigate the effects of adolescent health behavior on obesity using an online health behavior survey. The subjects of this study were 12,090 middle school students and 14,248 high school students among 26,338 Korean youths that responded to an online survey of youth health behaviors in 2018 (14th). There were significant differences in lifestyle, mental factors, exercise habits, and sitting habits as health behavior factors. The risk of obesity was higher in smokers (p<0.001), drinkers (p<0.001), those who ate breakfast less than four times a week (p<0.001), those who consumed fruit less than four times a week (p<0.001) and those who ate fast food less than two times a week (p<0.001). The obesity rate was higher in people with high-stress (p<0.05). Exercise habit as a factor was higher in the obesity rate than in physical activity by three times as much (p<0.001), whereas students categorized as muscular (p<0.01) had one to two times more physical activity (p<0.001). Students who had less than six hours of learning purpose were found to have higher obesity rates than those with more than six hours of learning purpose (p<0.001). In conclusion, the obesity rate did not increase with prolonged sitting habits, but did increase with longer sitting time except for those who studied purpose folly. Therefore, it is necessary to have a set time for internet use, as well as to educate schools about proper lifestyle, and to promote healthy exercise habits.
As the trend of steadily increasing the number of single or double household, there is a growing demand to see who is the outsider visiting the home during the free time. Various models of face recognition technology have been proposed through many studies, and Harr Cascade of OpenCV and Hog of Dlib are representative open source models. Among the two modes, Dlib's Hog has strengths in front of the indoor and at a limited distance, which is the focus of this study. In this paper, a face recognition visitor access system based on Dlib was designed and implemented. The whole system consists of a front module, a server module, and a mobile module, and in detail, it includes face registration, face recognition, real-time visitor verification and remote control, and video storage functions. The Precision, Specificity, and Accuracy according to the change of the distance threshold value were calculated using the error matrix with the photos published on the Internet, and compared with the results of previous studies. As a result of the experiment, it was confirmed that the implemented system was operating normally, and the result was confirmed to be similar to that reported by Dlib.
Traditionally, the engineering field has been dominated by face-to-face education focused on experimental practice, but demand for online learning has soared due to the rapid development of IT technology and Internet communication networks and recent changes in the social environment such as COVID-19. In order for efficient online education to be conducted in the engineering field, where the proportion of experimental practice is relatively high compared to other fields, virtual laboratory practice content that can replace actual experimental practice is very necessary. In this study, we developed a line tracer model and a virtual experimental software to simulate it for efficient online learning of microprocessor applications that are essential not only in the electric and electronic field but also in the overall engineering field where IT convergence takes place. In the developed line tracer model, the user can set various hardware parameter values in the desired form and write the software in assembly language or C language to test the operation on the computer. The developed line tracer virtual experimental software has been used in actual classes to verify its operation, and is expected to be an efficient virtual experimental practice tool in online non-face-to-face classes.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.