The Journal of the Institute of Internet, Broadcasting and Communication
/
v.22
no.4
/
pp.111-117
/
2022
Many studies have been conducted on software fault prediction models for decades, and the models using machine learning techniques showed the best performance. Deep learning techniques have become the most popular in the field of machine learning, but few studies have used them as classifiers for fault prediction models. Some studies have used deep learning to obtain semantic information from the model input source code or syntactic data. In this paper, we produced several models by changing the model structure and hyperparameters using MLP with three or more hidden layers. As a result of the model evaluation experiment, the MLP-based deep learning models showed similar performance to the existing models in terms of Accuracy, but significantly better in AUC. It also outperformed another deep learning model, the CNN model.
The Journal of the Institute of Internet, Broadcasting and Communication
/
v.24
no.2
/
pp.205-211
/
2024
The purpose of this study is to implement an agent that intelligently performs tracking and movement through reinforcement learning using the Unity and ML-Agents. In this study, we conducted an experiment to compare the learning performance between training one agent in a single learning simulation environment and parallel training of several agents simultaneously in a multi-learning simulation environment. From the experimental results, we could be confirmed that the parallel training method is about 4.9 times faster than the single training method in terms of learning speed, and more stable and effective learning occurs in terms of learning stability.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.14
no.9
/
pp.3730-3744
/
2020
This study proposes a deep learning-based evolutionary recommendation model for heterogeneous big data integration, for which collaborative filtering and a neural-network algorithm are employed. The proposed model is used to apply an individual's importance or sensory level to formulate a recommendation using the decision-making feedback. The evolutionary recommendation model is based on the Deep Neural Network (DNN), which is useful for analyzing and evaluating the feedback data among various neural-network algorithms, and the DNN is combined with collaborative filtering. The designed model is used to extract health information from data collected by the Korea National Health and Nutrition Examination Survey, and the collaborative filtering-based recommendation model was compared with the deep learning-based evolutionary recommendation model to evaluate its performance. The RMSE is used to evaluate the performance of the proposed model. According to the comparative analysis, the accuracy of the deep learning-based evolutionary recommendation model is superior to that of the collaborative filtering-based recommendation model.
International Journal of Internet, Broadcasting and Communication
/
v.12
no.3
/
pp.108-115
/
2020
Blended learning is a teaching method utilizing all the advantages in 'on and off-line' learning circumstances in order to enhance the learning effect and efficiency, more than the simple use of online factors in the classroom education. In this paper, we present the realization and simulation of algorithm for the realtime evaluation of low-grade and high-grade subjects in order to implement smart e-learning system, considering a lecture intelligibility. In order to grasp the levels of student's intelligibility, we simulated a function that automatically summarizes the study contents of class given by a lecturer. Especially, in administrator mode of smart e-learning system, we suggested and simulated a system in order to help the lecturer to easily manage the student's grades, and we have provided software to tell the student's intelligibility of lecture, analyzed the rate of incorrect answers, automatic judgment of lecture intelligibility and judge the weakest subject.
Journal of The Korean Association of Information Education
/
v.3
no.2
/
pp.113-119
/
2000
I studied a distance education model for English learning on the Internet. Basic WWW files, that contain courseware, are constructed with HTML, and functions, which are required in learning, are implemented with Java. Students and educators can access the preferred unit composed of the appropriate text, voice and image data by using a WWW browser at any time. The education system supports the automatic generation facility of English problems to practice reading and writing by making good use of the courseware data or various English text resources located on the Internet. Our system has functions to manage and control the flow of distance learning and to offer interaction between students and the system in a distributed environment. Educators can manage students' learning and can immediately be aware of who is attending and who is quitting the lesson in virtual space. Also, students and educators in different places can communicate and discuss a topic through the server. I implemented these functions, which are required in a client/server environment of distance education, with the use of Java. The URL for this system is "http://park.taegu-e.ac.kr" in the name of GAIA.
Because the lessons of 'our body' are based on indirect experiences and simple experiments, various methods are needed to improve the learning effect. In this study, seventeen AR contents were created to be used in five subjects in the 5th grade elementary school. The learning contents implementation were made using QCAR (QualComm's Augmented Reality) and Unity 3D (Unity 3D) program, which are augmented reality software development kits (SDKs). In order to find out the applicability, we applied the developed contents to one grade 5 classroom equipped with internet environment. Participants were asked about their perception of the program and interviewed. As a result, the developed AR learning contents appeared to be available. It was expected to help improve learning and was pointed out that improvement of internet condition and development, also, was needed expansion of various contents should be complemented.
The Journal of the Institute of Internet, Broadcasting and Communication
/
v.13
no.2
/
pp.255-260
/
2013
Nowadays, the intelligent education system has been studied using the self-directed learning ability. It can connect to the online virtual university and it is based on web technology that can be accessed anywhere anyplace. In order to implement the intelligent tutoring system, the student's weak and strong subjects must be first determined in real time, it proposed level learning capabilities and security algorithms in this paper. Moreover, in this paper, to implement the intelligent education tutoring system it proposed qr code and student level learning simulation.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.14
no.3
/
pp.1228-1248
/
2020
Steganalysis & steganography have witnessed immense progress over the past few years by the advancement of deep convolutional neural networks (DCNN). In this paper, we analyzed current research states from the latest image steganography and steganalysis frameworks based on deep learning. Our objective is to provide for future researchers the work being done on deep learning-based image steganography & steganalysis and highlights the strengths and weakness of existing up-to-date techniques. The result of this study opens new approaches for upcoming research and may serve as source of hypothesis for further significant research on deep learning-based image steganography and steganalysis. Finally, technical challenges of current methods and several promising directions on deep learning steganography and steganalysis are suggested to illustrate how these challenges can be transferred into prolific future research avenues.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.5
no.10
/
pp.1799-1813
/
2011
Many researches indicate that programming learning could help improve problem solving skills through algorithmic thinking. But in general, programming learning has been focused on programming language features and it also gave a heavy cognitive load to learners. Therefore, this paper proposes a programming activity process to improve novice programming learners' algorithmic thinking efficiently. An experiment was performed to measure the effectiveness of the proposed programming activity process. After the experiment, the learners' perception on programming was shown to be changed, to effective activity in improving problem solving.
International Journal of Internet, Broadcasting and Communication
/
v.10
no.2
/
pp.19-24
/
2018
This study investigated the academic stress and the immersion in learning in relation to AR and VR assisted instructions compared to traditional approaches. To that end, 78 $8^{th}$ graders in T and S city in Gangwondo were assigned to experimental and control groups. The experimental group received the VR and AR lessons. The academic stress was measured with the pre- and post-test scores, while the immersion in learning was measured with the post-test scores. In brief, AR and VR assisted lessons made statistically significant differences in the academic stress and immersion in learning in comparison to the traditional approaches.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.