• Title/Summary/Keyword: Internet environment

Search Result 4,963, Processing Time 0.03 seconds

Electronic Word-of-Mouth in B2C Virtual Communities: An Empirical Study from CTrip.com (B2C허의사구중적전자구비(B2C虚拟社区中的电子口碑): 관우휴정려유망적실증연구(关于携程旅游网的实证研究))

  • Li, Guoxin;Elliot, Statia;Choi, Chris
    • Journal of Global Scholars of Marketing Science
    • /
    • v.20 no.3
    • /
    • pp.262-268
    • /
    • 2010
  • Virtual communities (VCs) have developed rapidly, with more and more people participating in them to exchange information and opinions. A virtual community is a group of people who may or may not meet one another face to face, and who exchange words and ideas through the mediation of computer bulletin boards and networks. A business-to-consumer virtual community (B2CVC) is a commercial group that creates a trustworthy environment intended to motivate consumers to be more willing to buy from an online store. B2CVCs create a social atmosphere through information contribution such as recommendations, reviews, and ratings of buyers and sellers. Although the importance of B2CVCs has been recognized, few studies have been conducted to examine members' word-of-mouth behavior within these communities. This study proposes a model of involvement, statistics, trust, "stickiness," and word-of-mouth in a B2CVC and explores the relationships among these elements based on empirical data. The objectives are threefold: (i) to empirically test a B2CVC model that integrates measures of beliefs, attitudes, and behaviors; (ii) to better understand the nature of these relationships, specifically through word-of-mouth as a measure of revenue generation; and (iii) to better understand the role of stickiness of B2CVC in CRM marketing. The model incorporates three key elements concerning community members: (i) their beliefs, measured in terms of their involvement assessment; (ii) their attitudes, measured in terms of their satisfaction and trust; and, (iii) their behavior, measured in terms of site stickiness and their word-of-mouth. Involvement is considered the motivation for consumers to participate in a virtual community. For B2CVC members, information searching and posting have been proposed as the main purpose for their involvement. Satisfaction has been reviewed as an important indicator of a member's overall community evaluation, and conceptualized by different levels of member interactions with their VC. The formation and expansion of a VC depends on the willingness of members to share information and services. Researchers have found that trust is a core component facilitating the anonymous interaction in VCs and e-commerce, and therefore trust-building in VCs has been a common research topic. It is clear that the success of a B2CVC depends on the stickiness of its members to enhance purchasing potential. Opinions communicated and information exchanged between members may represent a type of written word-of-mouth. Therefore, word-of-mouth is one of the primary factors driving the diffusion of B2CVCs across the Internet. Figure 1 presents the research model and hypotheses. The model was tested through the implementation of an online survey of CTrip Travel VC members. A total of 243 collected questionnaires was reduced to 204 usable questionnaires through an empirical process of data cleaning. The study's hypotheses examined the extent to which involvement, satisfaction, and trust influence B2CVC stickiness and members' word-of-mouth. Structural Equation Modeling tested the hypotheses in the analysis, and the structural model fit indices were within accepted thresholds: ${\chi}^2^$/df was 2.76, NFI was .904, IFI was .931, CFI was .930, and RMSEA was .017. Results indicated that involvement has a significant influence on satisfaction (p<0.001, ${\beta}$=0.809). The proportion of variance in satisfaction explained by members' involvement was over half (adjusted $R^2$=0.654), reflecting a strong association. The effect of involvement on trust was also statistically significant (p<0.001, ${\beta}$=0.751), with 57 percent of the variance in trust explained by involvement (adjusted $R^2$=0.563). When the construct "stickiness" was treated as a dependent variable, the proportion of variance explained by the variables of trust and satisfaction was relatively low (adjusted $R^2$=0.331). Satisfaction did have a significant influence on stickiness, with ${\beta}$=0.514. However, unexpectedly, the influence of trust was not even significant (p=0.231, t=1.197), rejecting that proposed hypothesis. The importance of stickiness in the model was more significant because of its effect on e-WOM with ${\beta}$=0.920 (p<0.001). Here, the measures of Stickiness explain over eighty of the variance in e-WOM (Adjusted $R^2$=0.846). Overall, the results of the study supported the hypothesized relationships between members' involvement in a B2CVC and their satisfaction with and trust of it. However, trust, as a traditional measure in behavioral models, has no significant influence on stickiness in the B2CVC environment. This study contributes to the growing body of literature on B2CVCs, specifically addressing gaps in the academic research by integrating measures of beliefs, attitudes, and behaviors in one model. The results provide additional insights to behavioral factors in a B2CVC environment, helping to sort out relationships between traditional measures and relatively new measures. For practitioners, the identification of factors, such as member involvement, that strongly influence B2CVC member satisfaction can help focus technological resources in key areas. Global e-marketers can develop marketing strategies directly targeting B2CVC members. In the global tourism business, they can target Chinese members of a B2CVC by providing special discounts for active community members or developing early adopter programs to encourage stickiness in the community. Future studies are called for, and more sophisticated modeling, to expand the measurement of B2CVC member behavior and to conduct experiments across industries, communities, and cultures.

Visualizing the Results of Opinion Mining from Social Media Contents: Case Study of a Noodle Company (소셜미디어 콘텐츠의 오피니언 마이닝결과 시각화: N라면 사례 분석 연구)

  • Kim, Yoosin;Kwon, Do Young;Jeong, Seung Ryul
    • Journal of Intelligence and Information Systems
    • /
    • v.20 no.4
    • /
    • pp.89-105
    • /
    • 2014
  • After emergence of Internet, social media with highly interactive Web 2.0 applications has provided very user friendly means for consumers and companies to communicate with each other. Users have routinely published contents involving their opinions and interests in social media such as blogs, forums, chatting rooms, and discussion boards, and the contents are released real-time in the Internet. For that reason, many researchers and marketers regard social media contents as the source of information for business analytics to develop business insights, and many studies have reported results on mining business intelligence from Social media content. In particular, opinion mining and sentiment analysis, as a technique to extract, classify, understand, and assess the opinions implicit in text contents, are frequently applied into social media content analysis because it emphasizes determining sentiment polarity and extracting authors' opinions. A number of frameworks, methods, techniques and tools have been presented by these researchers. However, we have found some weaknesses from their methods which are often technically complicated and are not sufficiently user-friendly for helping business decisions and planning. In this study, we attempted to formulate a more comprehensive and practical approach to conduct opinion mining with visual deliverables. First, we described the entire cycle of practical opinion mining using Social media content from the initial data gathering stage to the final presentation session. Our proposed approach to opinion mining consists of four phases: collecting, qualifying, analyzing, and visualizing. In the first phase, analysts have to choose target social media. Each target media requires different ways for analysts to gain access. There are open-API, searching tools, DB2DB interface, purchasing contents, and so son. Second phase is pre-processing to generate useful materials for meaningful analysis. If we do not remove garbage data, results of social media analysis will not provide meaningful and useful business insights. To clean social media data, natural language processing techniques should be applied. The next step is the opinion mining phase where the cleansed social media content set is to be analyzed. The qualified data set includes not only user-generated contents but also content identification information such as creation date, author name, user id, content id, hit counts, review or reply, favorite, etc. Depending on the purpose of the analysis, researchers or data analysts can select a suitable mining tool. Topic extraction and buzz analysis are usually related to market trends analysis, while sentiment analysis is utilized to conduct reputation analysis. There are also various applications, such as stock prediction, product recommendation, sales forecasting, and so on. The last phase is visualization and presentation of analysis results. The major focus and purpose of this phase are to explain results of analysis and help users to comprehend its meaning. Therefore, to the extent possible, deliverables from this phase should be made simple, clear and easy to understand, rather than complex and flashy. To illustrate our approach, we conducted a case study on a leading Korean instant noodle company. We targeted the leading company, NS Food, with 66.5% of market share; the firm has kept No. 1 position in the Korean "Ramen" business for several decades. We collected a total of 11,869 pieces of contents including blogs, forum contents and news articles. After collecting social media content data, we generated instant noodle business specific language resources for data manipulation and analysis using natural language processing. In addition, we tried to classify contents in more detail categories such as marketing features, environment, reputation, etc. In those phase, we used free ware software programs such as TM, KoNLP, ggplot2 and plyr packages in R project. As the result, we presented several useful visualization outputs like domain specific lexicons, volume and sentiment graphs, topic word cloud, heat maps, valence tree map, and other visualized images to provide vivid, full-colored examples using open library software packages of the R project. Business actors can quickly detect areas by a swift glance that are weak, strong, positive, negative, quiet or loud. Heat map is able to explain movement of sentiment or volume in categories and time matrix which shows density of color on time periods. Valence tree map, one of the most comprehensive and holistic visualization models, should be very helpful for analysts and decision makers to quickly understand the "big picture" business situation with a hierarchical structure since tree-map can present buzz volume and sentiment with a visualized result in a certain period. This case study offers real-world business insights from market sensing which would demonstrate to practical-minded business users how they can use these types of results for timely decision making in response to on-going changes in the market. We believe our approach can provide practical and reliable guide to opinion mining with visualized results that are immediately useful, not just in food industry but in other industries as well.

A Study on the Relationship Between Online Community Characteristics and Loyalty : Focused on Mediating Roles of Self-Congruency, Consumer Experience, and Consumer to Consumer Interactivity (온라인 커뮤니티 특성과 충성도 간의 관계에 대한 연구: 자아일치성, 소비자 체험, 상호작용성의 매개적 역할을 중심으로)

  • Kim, Moon-Tae;Ock, Jung-Won
    • Journal of Global Scholars of Marketing Science
    • /
    • v.18 no.4
    • /
    • pp.157-194
    • /
    • 2008
  • The popularity of communities on the internet has captured the attention of marketing scholars and practitioners. By adapting to the culture of the internet, however, and providing consumer with the ability to interact with one another in addition to the company, businesses can build new and deeper relationships with customers. The economic potential of online communities has been discussed with much hope in the many popular papers. In contrast to this enthusiastic prognostications, empirical and practical evidence regarding the economic potential of the online community has shown a little different conclusion. To date, even communities with high levels of membership and vibrant social arenas have failed to build financial viability. In this perspective, this study investigates the role of various kinds of influencing factors to online community loyalty and basically suggests the framework that explains the process of building purchase loyalty. Even though the importance of building loyalty in an online environment has been emphasized from the marketing theorists and practitioners, there is no sufficient research conclusion about what is the process of building purchase loyalty and the most powerful factors that influence to it. In this study, the process of building purchase loyalty is divided into three levels; characteristics of community site such as content superiority, site vividness, navigation easiness, and customerization, the mediating variables such as self congruency, consumer experience, and consumer to consumer interactivity, and finally various factors about online community loyalty such as visit loyalty, affect, trust, and purchase loyalty are those things. And the findings of this research are as follows. First, consumer-to-consumer interactivity is an important factor to online community purchase loyalty and other loyalty factors. This means, in order to interact with other people more actively, many participants in online community have the willingness to buy some kinds of products such as music, content, avatar, and etc. From this perspective, marketers of online community have to create some online environments in order that consumers can easily interact with other consumers and make some site environments in order that consumer can feel experience in this site is interesting and self congruency is higher than at other community sites. It has been argued that giving consumers a good experience is vital in cyber space, and websites create an active (rather than passive) customer by their nature. Some researchers have tried to pin down the positive experience, with limited success and less empirical support. Web sites can provide a cognitively stimulating experience for the user. We define the online community experience as playfulness based on the past studies. Playfulness is created by the excitement generated through a website's content and measured using three descriptors Marketers can promote using and visiting online communities, which deliver a superior web experience, to influence their customers' attitudes and actions, encouraging high involvement with those communities. Specially, we suggest that transcendent customer experiences(TCEs) which have aspects of flow and/or peak experience, can generate lasting shifts in beliefs and attitudes including subjective self-transformation and facilitate strong consumer's ties to a online community. And we find that website success is closely related to positive website experiences: consumers will spend more time on the site, interacting with other users. As we can see figure 2, visit loyalty and consumer affect toward the online community site didn't directly influence to purchase loyalty. This implies that there may be a little different situations here in online community site compared to online shopping mall studies that shows close relations between revisit intention and purchase intention. There are so many alternative sites on web, consumers do not want to spend money to buy content and etc. In this sense, marketers of community websites must know consumers' affect toward online community site is not a last goal and important factor to influnece consumers' purchase. Third, building good content environment can be a really important marketing tool to create a competitive advantage in cyberspace. For example, Cyworld, Korea's number one community site shows distinctive superiority in the consumer evaluations of content characteristics such as content superiority, site vividness, and customerization. Particularly, comsumer evaluation about customerization was remarkably higher than the other sites. In this point, we can conclude that providing comsumers with good, unique and highly customized content will be urgent and important task directly and indirectly impacting to self congruency, consumer experience, c-to-c interactivity, and various loyalty factors of online community. By creating enjoyable, useful, and unique online community environments, online community portals such as Daum, Naver, and Cyworld are able to build customer loyalty to a degree that many of today's online marketer can only dream of these loyalty, in turn, generates strong economic returns. Another way to build good online community site is to provide consumers with an interactive, fun, experience-oriented or experiential Web site. Elements that can make a dot.com's Web site experiential include graphics, 3-D images, animation, video and audio capabilities. In addition, chat rooms and real-time customer service applications (which link site visitors directly to other visitors, or with company support personnel, respectively) are also being used to make web sites more interactive. Researchers note that online communities are increasingly incorporating such applications in their Web sites, in order to make consumers' online shopping experience more similar to that of an offline store. That is, if consumers are able to experience sensory stimulation (e.g. via 3-D images and audio sound), interact with other consumers (e.g., via chat rooms), and interact with sales or support people (e.g. via a real-time chat interface or e-mail), then they are likely to have a more positive dot.com experience, and develop a more positive image toward the online company itself). Analysts caution, however, that, while high quality graphics, animation and the like may create a fun experience for consumers, when heavily used, they can slow site navigation, resulting in frustrated consumers, who may never return to a site. Consequently, some analysts suggest that, at least with current technology, the rule-of-thumb is that less is more. That is, while graphics etc. can draw consumers to a site, they should be kept to a minimum, so as not to impact negatively on consumers' overall site experience.

  • PDF

A Study on the Influence of IT Education Service Quality on Educational Satisfaction, Work Application Intention, and Recommendation Intention: Focusing on the Moderating Effects of Learner Position and Participation Motivation (IT교육 서비스품질이 교육만족도, 현업적용의도 및 추천의도에 미치는 영향에 관한 연구: 학습자 직위 및 참여동기의 조절효과를 중심으로)

  • Kang, Ryeo-Eun;Yang, Sung-Byung
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.4
    • /
    • pp.169-196
    • /
    • 2017
  • The fourth industrial revolution represents a revolutionary change in the business environment and its ecosystem, which is a fusion of Information Technology (IT) and other industries. In line with these recent changes, the Ministry of Employment and Labor of South Korea announced 'the Fourth Industrial Revolution Leader Training Program,' which includes five key support areas such as (1) smart manufacturing, (2) Internet of Things (IoT), (3) big data including Artificial Intelligence (AI), (4) information security, and (5) bio innovation. Based on this program, we can get a glimpse of the South Korean government's efforts and willingness to emit leading human resource with advanced IT knowledge in various fusion technology-related and newly emerging industries. On the other hand, in order to nurture excellent IT manpower in preparation for the fourth industrial revolution, the role of educational institutions capable of providing high quality IT education services is most of importance. However, these days, most IT educational institutions have had difficulties in providing customized IT education services that meet the needs of consumers (i.e., learners), without breaking away from the traditional framework of providing supplier-oriented education services. From previous studies, it has been found that the provision of customized education services centered on learners leads to high satisfaction of learners, and that higher satisfaction increases not only task performance and the possibility of business application but also learners' recommendation intention. However, since research has not yet been conducted in a comprehensive way that consider both antecedent and consequent factors of the learner's satisfaction, more empirical research on this is highly desirable. With the advent of the fourth industrial revolution, a rising interest in various convergence technologies utilizing information technology (IT) has brought with the growing realization of the important role played by IT-related education services. However, research on the role of IT education service quality in the context of IT education is relatively scarce in spite of the fact that research on general education service quality and satisfaction has been actively conducted in various contexts. In this study, therefore, the five dimensions of IT education service quality (i.e., tangibles, reliability, responsiveness, assurance, and empathy) are derived from the context of IT education, based on the SERVPERF model and related previous studies. In addition, the effects of these detailed IT education service quality factors on learners' educational satisfaction and their work application/recommendation intentions are examined. Furthermore, the moderating roles of learner position (i.e., practitioner group vs. manager group) and participation motivation (i.e., voluntary participation vs. involuntary participation) in relationships between IT education service quality factors and learners' educational satisfaction, work application intention, and recommendation intention are also investigated. In an analysis using the structural equation model (SEM) technique based on a questionnaire given to 203 participants of IT education programs in an 'M' IT educational institution in Seoul, South Korea, tangibles, reliability, and assurance were found to have a significant effect on educational satisfaction. This educational satisfaction was found to have a significant effect on both work application intention and recommendation intention. Moreover, it was discovered that learner position and participation motivation have a partial moderating impact on the relationship between IT education service quality factors and educational satisfaction. This study holds academic implications in that it is one of the first studies to apply the SERVPERF model (rather than the SERVQUAL model, which has been widely adopted by prior studies) is to demonstrate the influence of IT education service quality on learners' educational satisfaction, work application intention, and recommendation intention in an IT education environment. The results of this study are expected to provide practical guidance for IT education service providers who wish to enhance learners' educational satisfaction and service management efficiency.

A Study on People Counting in Public Metro Service using Hybrid CNN-LSTM Algorithm (Hybrid CNN-LSTM 알고리즘을 활용한 도시철도 내 피플 카운팅 연구)

  • Choi, Ji-Hye;Kim, Min-Seung;Lee, Chan-Ho;Choi, Jung-Hwan;Lee, Jeong-Hee;Sung, Tae-Eung
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.2
    • /
    • pp.131-145
    • /
    • 2020
  • In line with the trend of industrial innovation, IoT technology utilized in a variety of fields is emerging as a key element in creation of new business models and the provision of user-friendly services through the combination of big data. The accumulated data from devices with the Internet-of-Things (IoT) is being used in many ways to build a convenience-based smart system as it can provide customized intelligent systems through user environment and pattern analysis. Recently, it has been applied to innovation in the public domain and has been using it for smart city and smart transportation, such as solving traffic and crime problems using CCTV. In particular, it is necessary to comprehensively consider the easiness of securing real-time service data and the stability of security when planning underground services or establishing movement amount control information system to enhance citizens' or commuters' convenience in circumstances with the congestion of public transportation such as subways, urban railways, etc. However, previous studies that utilize image data have limitations in reducing the performance of object detection under private issue and abnormal conditions. The IoT device-based sensor data used in this study is free from private issue because it does not require identification for individuals, and can be effectively utilized to build intelligent public services for unspecified people. Especially, sensor data stored by the IoT device need not be identified to an individual, and can be effectively utilized for constructing intelligent public services for many and unspecified people as data free form private issue. We utilize the IoT-based infrared sensor devices for an intelligent pedestrian tracking system in metro service which many people use on a daily basis and temperature data measured by sensors are therein transmitted in real time. The experimental environment for collecting data detected in real time from sensors was established for the equally-spaced midpoints of 4×4 upper parts in the ceiling of subway entrances where the actual movement amount of passengers is high, and it measured the temperature change for objects entering and leaving the detection spots. The measured data have gone through a preprocessing in which the reference values for 16 different areas are set and the difference values between the temperatures in 16 distinct areas and their reference values per unit of time are calculated. This corresponds to the methodology that maximizes movement within the detection area. In addition, the size of the data was increased by 10 times in order to more sensitively reflect the difference in temperature by area. For example, if the temperature data collected from the sensor at a given time were 28.5℃, the data analysis was conducted by changing the value to 285. As above, the data collected from sensors have the characteristics of time series data and image data with 4×4 resolution. Reflecting the characteristics of the measured, preprocessed data, we finally propose a hybrid algorithm that combines CNN in superior performance for image classification and LSTM, especially suitable for analyzing time series data, as referred to CNN-LSTM (Convolutional Neural Network-Long Short Term Memory). In the study, the CNN-LSTM algorithm is used to predict the number of passing persons in one of 4×4 detection areas. We verified the validation of the proposed model by taking performance comparison with other artificial intelligence algorithms such as Multi-Layer Perceptron (MLP), Long Short Term Memory (LSTM) and RNN-LSTM (Recurrent Neural Network-Long Short Term Memory). As a result of the experiment, proposed CNN-LSTM hybrid model compared to MLP, LSTM and RNN-LSTM has the best predictive performance. By utilizing the proposed devices and models, it is expected various metro services will be provided with no illegal issue about the personal information such as real-time monitoring of public transport facilities and emergency situation response services on the basis of congestion. However, the data have been collected by selecting one side of the entrances as the subject of analysis, and the data collected for a short period of time have been applied to the prediction. There exists the limitation that the verification of application in other environments needs to be carried out. In the future, it is expected that more reliability will be provided for the proposed model if experimental data is sufficiently collected in various environments or if learning data is further configured by measuring data in other sensors.

A Research Regarding the Application and Development of Web Contents Data in Home Economics (가정과 수업의 웹 콘텐츠 자료 활용 및 개발에 관한 연구)

  • Kim Mi-Suk;Wee Eun-Hah
    • Journal of Korean Home Economics Education Association
    • /
    • v.18 no.1 s.39
    • /
    • pp.49-64
    • /
    • 2006
  • The objective of this research is to see the current status of application and development of web contents data, and to suggest the way to improve the application and development of web contents data in home economics classes in middle schools. The respondents of the research were 312 middle school home economics teachers from all over the nation, and the tool was a questionnaire which consist of 22 questions about general status of the person who was answering and their recognitions and demands on the application and development of the web contents data. The major findings were as follows : 1) 88.5% of the sample responded that they accurately grasped a meaning of a class employing web contents data, and as for effects on preparation of professional study. 2) Most of the teachers were making good use of materials from the web in their classes. They responded that it maximized the efficiency of students' learning. Some didn't use the web contents in their classes. The reasons why the web contents data usage had been low were that the classrooms were not equipped properly (43.2%) and it took long time to create web contests (37.8%). 3) Kinds of web contents data that showed the most amount of usage were the presentations (48.4%), multi-media teaching materials(23.7%), and moving pictures(19.9%). 4) Teaches wanted to improve these particular materials among the web contents: family life and home, administration and environment of resources, and clothing preparation and administration. As for the lessons, teachers wanted developments of contents of lessons, generating motives, and evaluation to be by individual teachers or curriculum researchers' societies, and 30.8% were by Korea Education & Research Information Service (KERIS).

  • PDF

A Multimodal Profile Ensemble Approach to Development of Recommender Systems Using Big Data (빅데이터 기반 추천시스템 구현을 위한 다중 프로파일 앙상블 기법)

  • Kim, Minjeong;Cho, Yoonho
    • Journal of Intelligence and Information Systems
    • /
    • v.21 no.4
    • /
    • pp.93-110
    • /
    • 2015
  • The recommender system is a system which recommends products to the customers who are likely to be interested in. Based on automated information filtering technology, various recommender systems have been developed. Collaborative filtering (CF), one of the most successful recommendation algorithms, has been applied in a number of different domains such as recommending Web pages, books, movies, music and products. But, it has been known that CF has a critical shortcoming. CF finds neighbors whose preferences are like those of the target customer and recommends products those customers have most liked. Thus, CF works properly only when there's a sufficient number of ratings on common product from customers. When there's a shortage of customer ratings, CF makes the formation of a neighborhood inaccurate, thereby resulting in poor recommendations. To improve the performance of CF based recommender systems, most of the related studies have been focused on the development of novel algorithms under the assumption of using a single profile, which is created from user's rating information for items, purchase transactions, or Web access logs. With the advent of big data, companies got to collect more data and to use a variety of information with big size. So, many companies recognize it very importantly to utilize big data because it makes companies to improve their competitiveness and to create new value. In particular, on the rise is the issue of utilizing personal big data in the recommender system. It is why personal big data facilitate more accurate identification of the preferences or behaviors of users. The proposed recommendation methodology is as follows: First, multimodal user profiles are created from personal big data in order to grasp the preferences and behavior of users from various viewpoints. We derive five user profiles based on the personal information such as rating, site preference, demographic, Internet usage, and topic in text. Next, the similarity between users is calculated based on the profiles and then neighbors of users are found from the results. One of three ensemble approaches is applied to calculate the similarity. Each ensemble approach uses the similarity of combined profile, the average similarity of each profile, and the weighted average similarity of each profile, respectively. Finally, the products that people among the neighborhood prefer most to are recommended to the target users. For the experiments, we used the demographic data and a very large volume of Web log transaction for 5,000 panel users of a company that is specialized to analyzing ranks of Web sites. R and SAS E-miner was used to implement the proposed recommender system and to conduct the topic analysis using the keyword search, respectively. To evaluate the recommendation performance, we used 60% of data for training and 40% of data for test. The 5-fold cross validation was also conducted to enhance the reliability of our experiments. A widely used combination metric called F1 metric that gives equal weight to both recall and precision was employed for our evaluation. As the results of evaluation, the proposed methodology achieved the significant improvement over the single profile based CF algorithm. In particular, the ensemble approach using weighted average similarity shows the highest performance. That is, the rate of improvement in F1 is 16.9 percent for the ensemble approach using weighted average similarity and 8.1 percent for the ensemble approach using average similarity of each profile. From these results, we conclude that the multimodal profile ensemble approach is a viable solution to the problems encountered when there's a shortage of customer ratings. This study has significance in suggesting what kind of information could we use to create profile in the environment of big data and how could we combine and utilize them effectively. However, our methodology should be further studied to consider for its real-world application. We need to compare the differences in recommendation accuracy by applying the proposed method to different recommendation algorithms and then to identify which combination of them would show the best performance.

A Study on Developing Web based Logistic Information System(KT-Logis) (웹 기반 통합물류정보시스템(KT-Logis) 개발에 관한 연구)

  • 오상호;김태준
    • Proceedings of the Korean DIstribution Association Conference
    • /
    • 2001.11b
    • /
    • pp.125-141
    • /
    • 2001
  • In this paper, the current problems of logistics industry in Korea and their possible solutions were discussed. With Korea Telecoms KT-Logis, the supplier and demander of logistics service would not have to invest large sum of money into their computer system. All they need is just a computer with internet connected. What KT-Logis influence on the logistics industry are the following; 1. Many logistics service supplier and demander can do the business on the web with one computer system. 2. This web based computer system does not only work on the office but also apply on the field worker such as delivery personnel or even the forwarder with mobile phone. 3. KT-Logis is an integrated system which cover the broad arrange of logistics management from truck management to customer relations management. 4. Finally, KT-Logis is web based systems which suits for current e-business and mobile environment. In future, more studies should be done to develop more progressive integrated logistics information systems with enterprise resource planning(ERP) and supply chain management(SCM).

  • PDF

A Study of Performance Analysis on Effective Multiple Buffering and Packetizing Method of Multimedia Data for User-Demand Oriented RTSP Based Transmissions Between the PoC Box and a Terminal (PoC Box 단말의 RTSP 운용을 위한 사용자 요구 중심의 효율적인 다중 수신 버퍼링 기법 및 패킷화 방법에 대한 성능 분석에 관한 연구)

  • Bang, Ji-Woong;Kim, Dae-Won
    • Journal of Korea Multimedia Society
    • /
    • v.14 no.1
    • /
    • pp.54-75
    • /
    • 2011
  • PoC(Push-to-talk Over Cellular) is an integrated technology of group voice calls, video calls and internet based multimedia services. If a PoC user can not participate in the PoC session for various reasons such as an emergency situation, lack of battery capacity, then the user can use the PoC Box which has a similar functionality to the MM Box in the MMS(Multimedia Messaging Service). The RTSP(Real-Time Streaming Protocol) method is recommended to be used when there is a transmission session between the PoC box and a terminal. Since the existing VOD service uses a wired network, the packet size of RTSP-based VOD service is huge, however, the PoC service has wireless communication environments which have general characteristics to be used in RTSP method. Packet loss in a wired communication environments is relatively less than that in wireless communication environment, therefore, a buffering latency occurs in PoC service due to a play-out delay which means an asynchronous play of audio & video contents. Those problems make a user to be difficult to find the information they want when the media contents are played-out. In this paper, the following techniques and methods were proposed and their performance and superiority were verified through testing: cross-over dual reception buffering technique, advance partition multi-reception buffering technique, and on-demand multi-reception buffering technique, which are designed for effective picking up of information in media content being transmitted in short amount of time using RTSP when a user searches for media, as well as for reduction in playback delay; and same-priority packetization transmission method and priority-based packetization transmission method, which are media data packetization methods for transmission. From the simulation of functional evaluation, we could find that the proposed multiple receiving buffering and packetizing methods are superior, with respect to the media retrieval inclination, to the existing single receiving buffering method by 6-9 points from the viewpoint of effectiveness and excellence. Among them, especially, on-demand multiple receiving buffering technology with same-priority packetization transmission method is able to manage the media search inclination promptly to the requests of users by showing superiority of 3-24 points above compared to other combination methods. In addition, users could find the information they want much quickly since large amount of informations are received in a focused media retrieval period within a short time.

A Study on Storytelling of Yeongweal-palkyung Applied by Halo Effect of King Danjong' Sorrowful Story (단종애사(端宗哀史)의 후광효과를 적용한 영월팔경의 스토리탤링 전략)

  • Rho, Jae-Hyun
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.36 no.3
    • /
    • pp.63-74
    • /
    • 2008
  • With the awareness that Sinyeongwol Sipgyeong(ten scenic spots in Yeongwol) were designed too hastily and only for PR purposes after the change in the tourism environment, this paper indicates that most tourism and culture sources in Yeongwol are related to King Danjong, the sixth king of the Joseon Dynasty. This study proposes a 'Storytelling Plan' for the landscape content called 'Cultural Landscapes - Yeongwol Palgyeong(eight scenic spots in Yeongwol)' after reviewing types and content of Yeongwol Palgyeong through the halo effect of the well-known sad history of King Danjong and the cultural value of Yeongwol. The significance of the unity of the historic site and neighboring landscape is focused on by investigating the anaphoric relations between cultural landscape texts('Yeongwol Palgyeong') and historic content(the sad history of King Danjong). For this, the cultural lnddscape of Yeongwol has been framed and layered to make spatial texts. To emphasize the 'Telling' as well as the 'Story,' interesting episodes have been reviewed to discover a motive. To diversify the 'Telling' methods, absorptive landscape factors have been classified as 'Place,' 'Object' and 'Visual Point.' In addition the storytelling of Yeongwol Palgyeong was examined in consideration of the story and background of 'Yeongwol Palgyeong - Sad Story of King Danjong' and the interaction of a variety of cultural content by suggesting micro-content such as infotainment and edutainment as absorptive landscape factors. In order to make the storytelling plan available in practice as an alternative plan for Yeongwol Tourism, a visual point should be properly set to make the landscape look sufficiently dynamic. In addition, real landscape routes and narration scenarios should be prepared as well. Professional landscape interpreters who are well informed of the natural features of Yeongwol and the history of King Danjong should be brought into the project, and Internet and digital technology-based strategies should be developed.