• 제목/요약/키워드: Internet based learning

검색결과 1,577건 처리시간 0.028초

딥러닝 얼굴인식 기술을 활용한 방문자 출입관리 시스템 설계와 구현 (Design and Implementation of Visitor Access Control System using Deep learning Face Recognition)

  • 허석렬;김강민;이완직
    • 디지털융복합연구
    • /
    • 제19권2호
    • /
    • pp.245-251
    • /
    • 2021
  • 1,2인 가구가 꾸준하게 늘어나고 있는 추세에 비어 있는 시간대에 집을 방문하는 외부인이 누구인지 확인하고 싶은 요구가 증가하고 있다. 얼굴인식 기술은 많은 연구를 통해 여러 가지 모델이 제안되었는데 OpenCV의 Harr Cascade와 Dlib의 Hog가 대표적인 오픈소스 모델이다. 두 모델은 사용 환경에 따른 장단점을 가지고 있는데, 본 연구에서 초점을 둔 실내 현관 앞과 제한된 거리에서는 Dlib의 Hog가 강점을 가진다. 본 논문에서는 딥러닝 오픈 소스인 Dlib에 기반을 둔 얼굴인식 방문자 출입관리 시스템을 설계하고 구현하였다. 전체 시스템은 프론트 모듈과 서버모듈, 모바일모듈로 구성되며 세부적으로는 얼굴등록, 얼굴인식, 실시간 방문자 확인 및 원격제어, 동영상 저장 기능을 포함한다. 인터넷에서 공개된 사진을 이용하여 거리임계 값의 변화에 따른 정밀도, 특이도, 정확도를 구하고 선행연구 결과와 비교하였다. 실험 결과 구현된 시스템이 정상적으로 동작하는 것을 확인 하였으며 Dlib에서 보고한 것과 비슷한 결과를 보이는 것을 확인 하였다.

온라인 네트워킹 활동이 가상협업 역량 및 업무성과에 미치는 영향 (The Influence of Online Social Networking on Individual Virtual Competence and Task Performance in Organizations)

  • 서아영;신경식
    • Asia pacific journal of information systems
    • /
    • 제22권2호
    • /
    • pp.39-69
    • /
    • 2012
  • With the advent of communication technologies including electronic collaborative tools and conferencing systems provided over the Internet, virtual collaboration is becoming increasingly common in organizations. Virtual collaboration refers to an environment in which the people working together are interdependent in their tasks, share responsibility for outcomes, are geographically dispersed, and rely on mediated rather than face-to face, communication to produce an outcome. Research suggests that new sets of individual skill, knowledge, and ability (SKAs) are required to perform effectively in today's virtualized workplace, which is labeled as individual virtual competence. It is also argued that use of online social networking sites may influence not only individuals' daily lives but also their capability to manage their work-related relationships in organizations, which in turn leads to better performance. The existing research regarding (1) the relationship between virtual competence and task performance and (2) the relationship between online networking and task performance has been conducted based on different theoretical perspectives so that little is known about how online social networking and virtual competence interplay to predict individuals' task performance. To fill this gap, this study raises the following research questions: (1) What is the individual virtual competence required for better adjustment to the virtual collaboration environment? (2) How does online networking via diverse social network service sites influence individuals' task performance in organizations? (3) How do the joint effects of individual virtual competence and online networking influence task performance? To address these research questions, we first draw on the prior literature and derive four dimensions of individual virtual competence that are related with an individual's self-concept, knowledge and ability. Computer self-efficacy is defined as the extent to which an individual beliefs in his or her ability to use computer technology broadly. Remotework self-efficacy is defined as the extent to which an individual beliefs in his or her ability to work and perform joint tasks with others in virtual settings. Virtual media skill is defined as the degree of confidence of individuals to function in their work role without face-to-face interactions. Virtual social skill is an individual's skill level in using technologies to communicate in virtual settings to their full potential. It should be noted that the concept of virtual social skill is different from the self-efficacy and captures an individual's cognition-based ability to build social relationships with others in virtual settings. Next, we discuss how online networking influences both individual virtual competence and task performance based on the social network theory and the social learning theory. We argue that online networking may enhance individuals' capability in expanding their social networks with low costs. We also argue that online networking may enable individuals to learn the necessary skills regarding how they use technological functions, communicate with others, and share information and make social relations using the technical functions provided by electronic media, consequently increasing individual virtual competence. To examine the relationships among online networking, virtual competence, and task performance, we developed research models (the mediation, interaction, and additive models, respectively) by integrating the social network theory and the social learning theory. Using data from 112 employees of a virtualized company, we tested the proposed research models. The results of analysis partly support the mediation model in that online social networking positively influences individuals' computer self-efficacy, virtual social skill, and virtual media skill, which are key predictors of individuals' task performance. Furthermore, the results of the analysis partly support the interaction model in that the level of remotework self-efficacy moderates the relationship between online social networking and task performance. The results paint a picture of people adjusting to virtual collaboration that constrains and enables their task performance. This study contributes to research and practice. First, we suggest a shift of research focus to the individual level when examining virtual phenomena and theorize that online social networking can enhance individual virtual competence in some aspects. Second, we replicate and advance the prior competence literature by linking each component of virtual competence and objective task performance. The results of this study provide useful insights into how human resource responsibilities assess employees' weakness and strength when they organize virtualized groups or projects. Furthermore, it provides managers with insights into the kinds of development or training programs that they can engage in with their employees to advance their ability to undertake virtual work.

  • PDF

A Study on the Improvement Scheme of University's Software Education

  • Lee, Won Joo
    • 한국컴퓨터정보학회논문지
    • /
    • 제25권3호
    • /
    • pp.243-250
    • /
    • 2020
  • 본 논문에서는 대학의 효과적인 SW교육 방법을 제안한다. 해외 Top 10 대학과 SW중심대학, 거점 국립대학의 SW교육과정을 비교 분석하고, 그 결과를 기반으로 대학의 효과적인 SW교육 방법을 위해 5가지 개선할 점을 제안한다. 첫째는 교육과정 개발과정에서 SW 개발자의 직무 분석을 기반으로 교과목을 개발함으로써 산업체 현장 적응력을 높이는 것이다. 둘째는 4차 산업혁명 핵심기술(클라우드컴퓨팅, 빅데이터, 가상/증강현실, 사물인터넷 등)의 교과목을 강화하여 의료, 바이오, 센서, 인간, 인지과학 등의 다양한 분야와 융합하는 것이 필요하다. 셋째는 프로그래밍 언어 교육은 기본적인 문법 교육 후, SW융합 교과목에 포함하여 다양한 분야의 프로젝트를 구현해 보도록 해야 한다. 또한, 응용프로그램 개발자보다는 시스템프로그래밍 개발자, Back-End(서버단) 개발자 양성을 위한 교과목을 강화해야 한다. 넷째는 Product 기반의 자기 주도적 학습이 가능한 캡스톤디자인, 종합설계 등의 교과목을 강화하여 산업체 프로젝트에 참여할 기회를 제공한다. 다섯째는 지역 기반의 산업체 현장에서 기술을 습득할 수 있는 인턴십 또는 산학연계 프로그램을 강화함으로써 각 지역산업 기반의 대학 특성화 교육과정 개발이 필요하다.

영상처리기법을 이용한 CNN 기반 리눅스 악성코드 분류 연구 (A Study on Classification of CNN-based Linux Malware using Image Processing Techniques)

  • 김세진;김도연;이후기;이태진
    • 한국산학기술학회논문지
    • /
    • 제21권9호
    • /
    • pp.634-642
    • /
    • 2020
  • 사물인터넷(IoT) 기기의 확산으로 인해 다양한 아키텍처가 존재하는 Linux 운영체제의 활용이 증가하였다. 이에 따라 Linux 기반의 IoT 기기에 대한 보안 위협이 증가하고 있으며 기존 악성코드를 기반으로 한 변종 악성코드도 꾸준히 등장하고 있다. 본 논문에서는 시각화한 ELF(Executable and Linkable Format) 파일의 바이너리 데이터를 영상처리 기법 중 LBP(Local Binary Pattern)와 Median Filter를 적용하여 CNN(Convolutional Neural Network)모델로 악성코드를 분류하는 시스템을 제안한다. 실험 결과 원본 이미지의 경우 98.77%의 점수로 가장 높은 정확도와 F1-score를 보였으며 재현율도 98.55%의 가장 높은 점수를 보였다. Median Filter의 경우 99.19%로 가장 높은 정밀도와 0.008%의 가장 낮은 위양성률을 확인하였으며 LBP의 경우 전반적으로 원본과 Median Filter보다 낮은 결과를 보였음을 확인하였다. 원본과 영상처리기법별 분류 결과를 다수결로 분류했을 경우 원본과 Median Filter의 결과보다 정확도, 정밀도, F1-score, 위양성률이 전반적으로 좋아졌음을 확인하였다. 향후 악성코드 패밀리 분류에 활용하거나 다른 영상처리기법을 추가하여 다수결 분류의 정확도를 높이는 연구를 진행할 예정이다.

신뢰값 기반 대용량 트리플 처리를 위한 스파크 환경에서의 RDFS 온톨로지 추론 (Spark based Scalable RDFS Ontology Reasoning over Big Triples with Confidence Values)

  • 박현규;이완곤;바트셀렘;박영택
    • 정보과학회 논문지
    • /
    • 제43권1호
    • /
    • pp.87-95
    • /
    • 2016
  • 최근 인터넷과 디바이스의 발전으로 지식 정보의 양이 방대해 지면서 대용량 온톨로지를 이용한 추론 연구가 활발히 진행되고 있다. 일반적으로 트리플로 표현되는 빅데이터는 기계학습 프로그램이나 지식 공학자가 각 트리플의 신뢰도를 측정하여 제공한다. 하지만 수집된 데이터는 불확실한 데이터를 포함하고 있으며, 이러한 데이터를 추론하는 것은 불확실성을 내포한 추론 결과를 초래할 수 있다. 본 논문에서는 불확실성 문제를 해결하기 위해 수집된 데이터에 대한 신뢰의 정도를 나타내는 신뢰값(Confidence Value)를 이용한 RDFS 규칙 추론 방법에 대하여 설명하고, 메모리 기반의 분산 클러스터 프레임워크인 스파크(Spark)를 기반으로 데이터의 불확실성에 대한 고려를 하지 않는 기존의 추론 방법과 달리 신뢰값 계산에 대한 방법을 응용하여 RDFS 규칙을 통해 추론되는 새로운 데이터의 신뢰값을 계산하며, 계산된 신뢰값은 추론된 데이터에 대한 불확실성을 나타낸다. 제안하는 추론 방법의 성능을 검증하기 위해 온톨로지 추론과 검색 속도를 평가할 때 활용되는 공식 데이터인 LUBM을 대상으로 신뢰값을 추가하여 실험을 수행하였으며, 가장 큰 데이터인 LUBM3000을 수행하였을 때 1179초의 추론시간이 소요되었고, 초당 350K 트리플을 처리할 수 있는 성능을 보였다.

다중 객체 추적 알고리즘을 이용한 가공품 흐름 정보 기반 생산 실적 데이터 자동 수집 (Automatic Collection of Production Performance Data Based on Multi-Object Tracking Algorithms)

  • 임현아;오서정;손형준;오요셉
    • 한국전자거래학회지
    • /
    • 제27권2호
    • /
    • pp.205-218
    • /
    • 2022
  • 최근 제조업에서의 디지털 전환이 가속화되고 있다. 이에 따라 사물인터넷(internet of things: IoT) 기반으로 현장 데이터를 수집하는 기술의 중요성이 증대되고 있다. 이러한 접근법들은 주로 각종 센서와 통신 기술을 활용하여 특정 제조 데이터를 확보하는 것에 초점을 맞춘다. 현장 데이터 수집의 채널을 확장하기 위해 본 연구는 비전(vision) 인공지능 기반으로 제조 데이터를 자동 수집하는 방법을 제안한다. 이는 실시간 영상 정보를 객체 탐지 및 추적 기술로 분석하고, 필요한 제조 데이터를 확보하는 것이다. 연구진은 객체 탐지 및 추적 알고리즘으로 YOLO(You Only Look Once)와 딥소트(DeepSORT)를 적용하여 프레임별 객체의 움직임 정보를 수집한다. 이후, 움직임 정보는 후보정을 통해 두 가지 제조 데이터(생산 실적, 생산 시간)로 변환된다. 딥러닝을 위한 학습 데이터를 확보하기 위해 동적으로 움직이는 공장 모형이 제작되었다. 또한, 실시간 영상 정보가 제조 데이터로 자동 변환되어 데이터베이스에 저장되는 상황을 재현하기 위해 운영 시나리오를 수립하였다. 운영 시나리오는 6개의 설비로 구성된 흐름 생산 공정(flow-shop)을 가정한다. 운영 시나리오에 따른 제조 데이터를 수집한 결과 96.3%의 정확도를 보였다.

상처와 주름이 있는 지문 판별에 효율적인 심층 학습 비교연구 (A Comparative Study on the Effective Deep Learning for Fingerprint Recognition with Scar and Wrinkle)

  • 김준섭;림빈 보니카;성낙준;홍민
    • 인터넷정보학회논문지
    • /
    • 제21권4호
    • /
    • pp.17-23
    • /
    • 2020
  • 인간의 특성과 관련된 측정 항목을 나타내는 생체정보는 도난이나 분실의 염려가 없으므로 높은 신뢰성을 가진 보안 기술로서 큰 주목을 받고 있다. 이러한 생체정보 중 지문은 본인 인증, 신원 파악 등의 분야에 주로 사용된다. 신원을 파악할 때 지문 이미지에 인증을 수행하기 어려운 상처, 주름, 습기 등의 문제가 있을 경우, 지문 전문가가 전처리단계를 통해 직접 지문에 어떠한 문제가 있는지 파악하고 문제에 맞는 영상처리 알고리즘을 적용해 문제를 해결한다. 이때 지문에 상처와 주름이 있는 지문 영상을 판별해주는 인공지능 소프트웨어를 구현하면 손쉽게 상처나 주름의 여부를 확인할 수 있고, 알맞은 알고리즘을 선정해 쉽게 지문 이미지를 개선할 수 있다. 본 연구에서는 이러한 인공지능 소프트웨어의 개발을 위해 캄보디아 왕립대학교의 학생 1,010명, Sokoto 오픈 데이터셋 600명, 국내 학생 98명의 모든 손가락 지문을 취득해 총 17,080개의 지문 데이터베이스를 구축했다. 구축한 데이터베이스에서 상처나 주름이 있는 경우를 판별하기 위해 기준을 확립하고 전문가의 검증을 거쳐 데이터 어노테이션을 진행했다. 트레이닝 데이터셋과 테스트 데이터셋은 캄보디아의 데이터, Sokoto 데이터로 구성하였으며 비율을 8:2로 설정했다. 그리고 국내 학생 98명의 데이터를 검증 데이터 셋으로 설정했다, 구성된 데이터셋을 사용해 Classic CNN, AlexNet, VGG-16, Resnet50, Yolo v3 등의 다섯 가지 CNN 기반 아키텍처를 구현해 학습을 진행했으며 지문의 상처와 주름 판독에서 가장 좋은 성능을 보이는 모델을 찾는 연구를 수행했다. 다섯가지 아키텍처 중 지문 영상에서 상처와 주름 여부를 가장 잘 판별할 수 있는 아키텍처는 ResNet50으로 검증 결과 81.51%로 가장 좋은 성능을 보였다.

Deep Convolution Neural Networks 이용하여 결함 검출을 위한 결함이 있는 철도선로표면 디지털영상 재 생성 (Regeneration of a defective Railroad Surface for defect detection with Deep Convolution Neural Networks)

  • 김현호;한석민
    • 인터넷정보학회논문지
    • /
    • 제21권6호
    • /
    • pp.23-31
    • /
    • 2020
  • 본 연구는 철도표면상에 발생하는 노후 현상 중 하나인 결함 검출을 위해 학습데이터를 생성함으로써 결함 검출 모델에서 더 높은 점수를 얻기 위해 진행되었다. 철도표면에서 결함은 선로결속장치 및 선로와 차량의 마찰 등 다양한 원인에 의해 발생하고 선로 파손 등의 사고를 유발할 수 있기 때문에 결함에 대한 철도 유지관리가 필요 하다. 그래서 철도 유지관리의 자동화 및 비용절감을 위해 철도 표면 영상에 영상처리 또는 기계학습을 활용한 결함 검출 및 검사에 대한 다양한 연구가 진행되고 있다. 일반적으로 영상 처리 분석기법 및 기계학습 기술의 성능은 데이터의 수량과 품질에 의존한다. 그렇기 때문에 일부 연구는 일반적이고 다양한 철도표면영상의 데이터베이스를 확보하기위해 등간격으로 선로표면을 촬영하는 장치 또는 탑재된 차량이 필요로 하였다. 본연구는 이러한 기계적인 영상획득 장치의 운용비용을 감소시키고 보완하기 위해 대표적인 영상생성관련 딥러닝 모델인 생성적 적대적 네트워크의 기본 구성에서 여러 관련연구에서 제시된 방법을 응용, 결함이 있는 철도 표면 재생성모델을 구성하여, 전용 데이터베이스가 구축되지 않은 철도 표면 영상에 대해서도 결함 검출을 진행할 수 있도록 하였다. 구성한 모델은 상이한 철도 표면 텍스처들을 반영한 철도 표면 생성을 학습하고 여러 임의의 결함의 위치에 대한 Ground-Truth들을 만족하는 다양한 결함을 재 생성하도록 설계하였다. 재생성된 철도 표면의 영상들을 결함 검출 딥러닝 모델에 학습데이터로 사용한다. 재생성모델의 유효성을 검증하기 위해 철도표면데이터를 3가지의 하위집합으로 군집화 하여 하나의 집합세트를 원본 영상으로 정의하고, 다른 두개의 나머지 하위집합들의 몇가지의 선로표면영상을 텍스처 영상으로 사용하여 새로운 철도 표면 영상을 생성한다. 그리고 결함 검출 모델에서 학습데이터로 생성된 새로운 철도 표면 영상을 사용하였을 때와, 생성된 철도 표면 영상이 없는 원본 영상을 사용하였을 때를 나누어 검증한다. 앞서 분류했던 하위집합들 중에서 원본영상으로 사용된 집합세트를 제외한 두 개의 하위집합들은 각각의 환경에서 학습된 결함 검출 모델에서 검증하여 출력인 픽셀단위 분류지도 영상을 얻는다. 이 픽셀단위 분류지도영상들과 실제 결함의 위치에 대한 원본결함 지도(Ground-Truth)들의 IoU(Intersection over Union) 및 F1-score로 평가하여 성능을 계산하였다. 결과적으로 두개의 하위집합의 텍스처 영상을 이용한 재생성된 학습데이터를 학습한 결함 검출모델의 점수는 원본 영상만을 학습하였을 때의 점수보다 약 IoU 및 F1-score가 10~15% 증가하였다. 이는 전용 학습 데이터가 구축되지 않은 철도표면 영상에 대해서도 기존 데이터를 이용하여 결함 검출이 상당히 가능함을 증명하는 것이다.

웰빙 트렌드 로하스(LOHAS)에 나타난 소비자 의식 변화에 따른 웹 디자인 발전방향 분석 - 의, 식, 주 웹 사이트를 중심으로 - (Analysis on the Trend in Customers' Consciousness as Appeared in Wellbeing Trend, LOHAS -Mainly in Food, Clothing, and Shelter Based Websites-)

  • 김민서;전양덕
    • 디자인학연구
    • /
    • 제20권3호
    • /
    • pp.49-60
    • /
    • 2007
  • 세계화 및 정보화 시대에 접어들면서 시장 환경에 많은 변화가 나타나고 있다. 인터넷의 보급과 글로벌 네트워크의 등장으로 세계 어디서나 정보 습득과 상거래가 가능해졌기 때문이며, 소비자의 의식수준과 기호를 동질화시켜 새로운 트렌드와 라이프스타일이 동시에 정착되고 있는 것이다. 본 연구에서는 웰빙 소비자와 로하스 소비자의 이론적 개념을 정립해 보았다. 사전 설문조사를 통해 로하스 단계의 소비자를 분류하였으며, 웰빙 브랜드와 일반 브랜드의 의. 식. 주 업체를 선정하여 업체의 웹 디자인을 분석하였다. 이를 통해 로하스 소비자들이 느끼는 웰빙 감성, 감성과 이성의 인지도, 긍정과 부정, 또한 심리적 감성 인지도, 웹 디자인을 통한 선호도 변화를 통해 그들의 가치관과 트렌드를 파악하여 웹 디자인이 나아 가야할 방향을 모색하였다. 연구를 통해 얻어진 결론은 첫째, 소비자들은 웰빙 브랜드의 웹 페이지에서 일반 브랜드의 웹 페이지 보다 웰빙에 대한 감성을 느낄 수 있다. 둘째, 웰빙 브랜드의 웹 페이지에서는 감성보다는 이성을 인지하고 있다. 셋째, 웰빙 브랜드의 웹 디자인이 일반 브랜드의 웹 디자인 보다 호감과 친근감 즉 긍정적인 면에서 좀 더 높은 점수를 얻었으며, 심리적 감성인지가 높아도 웹 디자인에 대한 선호도에 크게 영향을 미치지는 못한다. 넷째, 웰빙 브랜드가 일반 브랜드보다는 기본적인 선호도가 높으며, 웹 페이지를 방문 후 선호도 역시 높았다. 다섯째, 웰빙 브랜드의 웹 디자인을 통한 감성 형용사를 추출한 결과 동적, 정적 어느 곳에 치중하지 않은 약간 심미적인 쪽의 그래프를 표시할 수 있었다. 위의 조사 결과를 통해 앞으로 점차 변화 되어가는 소비자들을 산업저인 차원에서 적극적으로 이용하기 위한 전략을 세우는 데 작은 기초가 되길 바란다.

  • PDF

Use of Digital Educational Resources in the Training of Future Specialists in the EU Countries

  • Plakhotnik, Olga;Zlatnikov, Valentyn;Matviienko, Olena;Bezliudnyi, Oleksandr;Havrylenko, Anna;Yashchuk, Olena;Andrusyk, Pavlo
    • International Journal of Computer Science & Network Security
    • /
    • 제22권10호
    • /
    • pp.17-24
    • /
    • 2022
  • The article proves that the main goal of informatization of higher education institutions in the EU countries is to improve the quality of education of future specialists by introducing digital educational resources into the education process. The main tasks of informatization of education are defined. Digital educational resources are interpreted as a set of data in digital form that is applicable for use in the learning process; it is an information source containing graphic, text, digital, speech, music, video, photo and other information aimed at implementing the goals and objectives of modern education; educational resources on the Internet, electronic textbooks, educational programs, electronic libraries, etc. The creation of digital educational resources is defined as one of the main directions of informatization of all forms and levels of Education. Types of digital educational resources by educational functions are considered. The factors that determine the effectiveness of using digital educational resources in the educational process are identified. The use of digital educational resources in the training of future specialists in the EU countries is considered in detail. European countries note that digital educational resources in professional use allow you to implement a fundamentally new approach to teaching and education, which is based on broad communication, free exchange of opinions, ideas, information of participants in a joint project, on a completely natural desire to learn new things, expand their horizons; is based on real research methods (scientific or creative laboratories), allowing you to learn the laws of nature, the basics of techniques, technology, social phenomena in their dynamics, in the process of solving vital problems, features of various types of creativity in the process of joint activities of a group of participants; promotes the acquisition by teachers of various related skills that can be very useful in their professional activities, including the skills of using computer equipment and various digital technologies.