• Title/Summary/Keyword: Internet Security Simulation

Search Result 218, Processing Time 0.034 seconds

Prediction of the Future Topology of Internet Reflecting Non-monotony (비단조 변화성을 이용한 인터넷의 미래 위상 예측)

  • 조인숙;이문호
    • Journal of Information Technology Applications and Management
    • /
    • v.11 no.2
    • /
    • pp.205-214
    • /
    • 2004
  • Internet evolves into the huge network with new nodes inserted or deleted depending on specific situations. A new model of network topology is needed in order to analyze time-varying Internet more realistically and effectively. In this study the non-monotony models are proposed which can describe topological changes of Internet such as node insertion and deletion, and can be used for predicting its future topology. Simulation is performed to analyze the topology generated by our model. Simulation results show that our proposed model conform the power law of realistic Internet better than conventional ones. The non-monotony model can be utilized for designing Internet protocols and networks with better security.

  • PDF

A Light-weighted Data Collection Method for DNS Simulation on the Cyber Range

  • Li, Shuang;Du, Shasha;Huang, Wenfeng;Liang, Siyu;Deng, Jinxi;Wang, Le;Huang, Huiwu;Liao, Xinhai;Su, Shen
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.8
    • /
    • pp.3501-3518
    • /
    • 2020
  • The method of DNS data collection is one of the most important parts of DNS simulation. DNS data contains a lot of information. When it comes to analyzing the DNS security issues by simulation on the cyber range with customized features, we only need some of them, such as IP address, domain name information, etc. Therefore, the data we need are supposed to be light-weighted and easy to manipulate. Many researchers have designed different schemes to obtain their datasets, such as LDplayer and Thales system. However, existing solutions consume excessive computational resources, which are not necessary for DNS security simulation. In this paper, we propose a light-weighted active data collection method to prepare the datasets for DNS simulation on cyber range. We evaluate the performance of the method and prove that it can collect DNS data in a short time and store the collected data at a lower storage cost. In addition, we give two examples to illustrate how our method can be used in a variety of applications.

An Application of Blackboard Architecture for the Coordination among the Security Systems (보안 모델의 연동을 위한 블랙보드구조의 적용)

  • 서희석;조대호
    • Journal of the Korea Society for Simulation
    • /
    • v.11 no.4
    • /
    • pp.91-105
    • /
    • 2002
  • The attackers on Internet-connected systems we are seeing today are more serious and technically complex than those in the past. So it is beyond the scope of amy one system to deal with the intrusions. That the multiple IDSes (Intrusion Detection System) coordinate by sharing attacker's information for the effective detection of the intrusion is the effective method for improving the intrusion detection performance. The system which uses BBA (BlackBoard Architecture) for the information sharing can be easily expanded by adding new agents and increasing the number of BB (BlackBoard) levels. Moreover the subdivided levels of blackboard enhance the sensitivity of the intrusion detection. For the simulation, security models are constructed based on the DEVS (Discrete EVent system Specification) formalism. The intrusion detection agent uses the ES (Expert System). The intrusion detection system detects the intrusions using the blackboard and the firewall responses these detection information.

  • PDF

Simulation for the Propagation Pattern Analysis of Code Red Worm (Code Red 웜 전파 패턴 분석을 위한 시뮬레이션)

  • Kang, Koo-Hong
    • The Journal of the Korea Contents Association
    • /
    • v.6 no.12
    • /
    • pp.155-162
    • /
    • 2006
  • It was well known that how much seriously the Internet worm such as the Code Red had an effect on our daily activities. Recently the rapid growth of the Internet speed will produce more swift damage us in a short term period. In order to defend against future worm, we need to understand the propagation pattern during the lifetime of worms. In this paper, we analyze the propagation pattern of the Code Red worm by a computer simulation. In particular, we show that an existing simulation result about the number of infectious hosts does not match the observed data, and then we introduce a factor of revised human countermeasures into the simulation. We also show the simulation results presenting the importance of patching and pre-patching of the Internet worm.

  • PDF

A Device Authentication Mechanism Reducing Performance Cost in Mobile P2P Networks

  • Jeong, Yoon-Su;Kim, Yong-Tae;Shin, Seung-Soo;Lee, Sang-Ho
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.4
    • /
    • pp.923-948
    • /
    • 2013
  • The main concern in mobile peer-to-peer (P2P) networks is security because jamming or eavesdropping on a wireless link is much easier than on a wired one and such damage can be incurred without physical access or contact. In particular, authentication has increasingly become a requirement in mobile P2P environments. This paper presents a new mutual authentication mechanism which requires less storage space and maintains a high level of security in mobile P2P networks. The proposed mechanism improves efficiency by avoiding the use of centralized entities and is designed to be agile in terms of both reliability and low-cost implementation. The mechanism suggested in the simulation evaluates the function costs occurring in authentication between the devices under mobile P2P network environment comparing to existing method in terms of basic operation costs, traffic costs, communications costs, storage costs and scalability. The simulation results show that the proposed mechanism provides high authentication with low cryptography processing overhead.

Joint Beamforming and Power Splitting Design for Physical Layer Security in Cognitive SWIPT Decode-and-Forward Relay Networks

  • Xu, Xiaorong;Hu, Andi;Yao, Yingbiao;Feng, Wei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.1
    • /
    • pp.1-19
    • /
    • 2020
  • In an underlay cognitive simultaneous wireless information and power transfer (SWIPT) network, communication from secondary user (SU) to secondary destination (SD) is accomplished with decode-and-forward (DF) relays. Multiple energy-constrained relays are assumed to harvest energy from SU via power splitting (PS) protocol and complete SU secure information transmission with beamforming. Hence, physical layer security (PLS) is investigated in cognitive SWIPT network. In order to interfere with eavesdropper and improve relay's energy efficiency, a destination-assisted jamming scheme is proposed. Namely, SD transmits artificial noise (AN) to interfere with eavesdropping, while jamming signal can also provide harvested energy to relays. Beamforming vector and power splitting ratio are jointly optimized with the objective of SU secrecy capacity maximization. We solve this non-convex optimization problem via a general two-stage procedure. Firstly, we obtain the optimal beamforming vector through semi-definite relaxation (SDR) method with a fixed power splitting ratio. Secondly, the best power splitting ratio can be obtained by one-dimensional search. We provide simulation results to verify the proposed solution. Simulation results show that the scheme achieves the maximum SD secrecy rate with appropriate selection of power splitting ratio, and the proposed scheme guarantees security in cognitive SWIPT networks.

A Hybrid Modeling Method for RCS Worm Simulation (RCS 웜 시뮬레이션을 위한 Hybrid 모델링 방법)

  • Kim, Jung-Sik;Park, Jin-Ho;Cho, Jae-Ik;Choi, Kyoung-Ho;Im, Eul-Gyu
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.17 no.3
    • /
    • pp.43-53
    • /
    • 2007
  • Internet becomes more and more popular, and most companies and institutes use web services for e-business and many other purposes. With the explosion of Internet, the occurrence of cyber terrorism has grown very rapidly. Simulation is one of the most widely used method to study internet worms. But, it is quite challenging to simulate very large-scale worm attacks because of various reasons. In this paper, we propose a hybrid modeling method for RCS(Random Constant Spreading) worm simulation. The proposed hybrid model simulates worm attacks by synchronizing modeling network and packet network. So, this model will be both detailed enough to generate realistic packet traffic, and efficient enough to model a worm spreading through the Internet. Moreover, our model have the capability of dynamic updates of the modeling parameters. Finally, we simulate the hybrid model with the CodeRed worm to show validity of our proposed model for RCS worm simulation.

A Verification of Intruder Trace-back Algorithm using Network Simulator (NS-2) (네트워크 시뮬레이터 도구를 이용한 침입자 역추적 알고리즘 검증)

  • Seo Dong-il;Kim Hwan-kuk;Lee Sang-ho
    • Journal of KIISE:Information Networking
    • /
    • v.32 no.1
    • /
    • pp.1-11
    • /
    • 2005
  • Internet has become an essential part of our daily lives. Many of the day to day activities can already be carried out over Internet, and its convenience has greatly increased the number of Internet users. Hut as Internet gains its popularity, the illicit incidents over Internet has also proliferated. The intruder trace-back technology is the one that enables real time tracking the position of the hacker who attempts to invade the system through the various bypass routes. In this paper, the RTS algorithm which is the TCP connection trace-back system using the watermarking technology on Internet is proposed. Furthermore, the trace-bark elements are modeled by analyzing the Proposed trace-back algorithm, and the results of the simulation under the virtual topology network using ns-2, the network simulation tool are presented.

Revocation Protocol for Group Signatures in VANETs: A Secure Construction

  • Shari, Nur Fadhilah Mohd;Malip, Amizah;Othman, Wan Ainun Mior
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.1
    • /
    • pp.299-322
    • /
    • 2020
  • Vehicular ad hoc networks (VANETs) enable wireless communication between vehicles and roadside infrastructure to provide a safer and more efficient driving environment. However, due to VANETs wireless nature, vehicles are exposed to several security attacks when they join the network. In order to protect VANETs against misbehaviours, one of the vital security requirements is to revoke the misbehaved vehicles from the network. Some existing revocation protocols have been proposed to enhance security in VANETs. However, most of the protocols do not efficiently address revocation issues associated with group signature-based schemes. In this paper, we address the problem by constructing a revocation protocol particularly for group signatures in VANETs. We show that this protocol can be securely and efficiently solve the issue of revocation in group signature schemes. The theoretical analysis and simulation results demonstrate our work is secure against adversaries and achieves performance efficiency and scalability.

Security performance analysis of SIMO relay systems over Composite Fading Channels

  • Sun, Jiangfeng;Bie, Hongxia;Li, Xingwang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.6
    • /
    • pp.2649-2669
    • /
    • 2020
  • In this paper, we analyze the secrecy performance of single-input multiple-output (SIMO) relay systems over κ-μ shadowed fading channels. Based on considering relay model employing decode-and-forward (DF) protocol, two security evaluation metrics, namely, secure outage probability (SOP) and probability of strictly positive secrecy capacity (SPSC) are studied, for which closed-form analytical expressions are derived. In addition, Monte Carlo results prove the validity of the theoretical derivation. The simulation results confirm that the factors that enhance the security include large ratio of (μD, μE), (mD, mE), (LD, LE) and small ratio of (kD, kE) under the high signal-to-noise ratio regime.