• Title/Summary/Keyword: International electro-technical commission standard

Search Result 17, Processing Time 0.027 seconds

Evaluation of the Noise Power Spectrum by Using American College of Radiology Phantom for Magnetic Resonance Imaging (자기공명영상에서 ACR 팬텀을 이용한 잡음전력스펙트럼 평가)

  • Jung-Whan Min;Hoi-Woun Jeong
    • Journal of radiological science and technology
    • /
    • v.47 no.1
    • /
    • pp.21-28
    • /
    • 2024
  • This study was purpose to quantitative evaluation of comparison of the image intensity uniformity and noise power spectrum (NPS) by using American college of radiology (ACR) phantom for magnetic resonance imaging (MRI). The MRI was used achiva 3.0T MRI and discovery MR 750, 3.0T, the head and neck matrix shim SENSE head coil were 32 channels receive MR coil. The MRI was used parameters of image sequence for ACR standard and general hospital. NPS value of the ACR standard T2 vertical image in GE equipment was 7.65E-06 when the frequency was 1.0 mm-1. And the NPS value of the ACR hospital T1 region of interest (ROI) 9 over all vertical image in Philips equipment was 9E-08 when the frequency was 1.0 mm-1 and the NPS value of the hospital T2 ROI 9 over all vertical image in Philips equipment was 1.06E-07 when the frequency was 1.0 mm-1. NPS was used efficiently by using a general hospital vertical sequence more than the standard vertical sequence method by using the ACR phantom. Furthermore NPS was the quantitative quality assurance (QA) assessment method for noise and image intensity uniformity characteristics was applied mutatis mutandis, and the results values of the physical imaging NPS of the 3.0T MRI and ACR phantom were presented.

Evaluation of the Spatial Resolution for Exposure Class in Computed Radiography by Using the Modulation Transfer Function (변조전달함수를 이용한 컴퓨터 방사선영상의 감도 노출 분류에 따른 공간분해능 평가)

  • Seoung, Youl-Hun
    • Journal of Digital Convergence
    • /
    • v.11 no.8
    • /
    • pp.273-279
    • /
    • 2013
  • The purpose of the study was to present basic data to evaluation of the spatial resolution for exposure class(EC) in computed radiography(CR) by using the modulation transfer function(MTF). In this study, MTF was measured the edge method by using image plate(IP) of $100{\mu}mm$ pixels. A standard beam quality RQA5 based on an international electro-technical commission(IEC) standard was used to perform the X-ray imaging studies. Digital imaging began to set the sensitivity to EC 50, 100, 200, 300, 400, 600, 800, 1200 in X-ray irradiated to IP. The MTF 50% and 10% in the final images was analysis by using an authorized image analysis program the Origin 8.0 and the image J. As a results, the EC 200 was the best spatial resolution at MTF 50% ($1.979{\pm}0.114lp/mm$) and MTF 10% ($3.932{\pm}0.041$). Therefore, the EC 200 could be useful for the diagnosis of diseases that require high spatial resolution such as fractures.

A Case Study of Application of Exposure Index in Computed Radiography by Using Human Chest Phantom (인체 흉부 모형 팬텀을 이용한 컴퓨터방사선영상에서 노출지수의 적용 사례 연구)

  • Jeong, Hoi-Woun;Min, Jung-Whan
    • Journal of radiological science and technology
    • /
    • v.41 no.6
    • /
    • pp.533-538
    • /
    • 2018
  • As the use of digital radiographic system has been expanded, there are some concerns an increase about in patient of radiation dose. Therefore, International Electro-technical Commission (IEC) has been proposed a standard foe exposure index (EI). In this study, the EI was measured on human chest model using computed radiography (CR). Radiation quality used RQA5 of IEC62494-1. After acquiring the chest anterior posterior image (Chest AP) by using the phantom, the EI was obtained by applying the system response. In this study, we have analyzed the images with the detector size (Full filed ROI) and the optimized image (Fit filed ROI). The EI increased proportionally with radiation dose increase. Due to the discrete increase in pixel value, the EI showed an exponential increase. The discrete increase in noise equivalent quanta (NEQ) resulted in a discrete increase in the EI. The EI of the two images used in this study increased with increasing NEQ but showed different increments. For the measurement of the EI, IEC standards must be followed. The EI should be used as an index to evaluate the image quality for quality control of X-ray image rather than as an indicator of exposure dose. When calculating the EI, the system response should be applied depending on whether or not the grid is used. The size of the field should be obtained by including only the necessary parts.

Comparison of Noise Power Spectrum Methodologies in Measurements by Using Various Electronic Portal Imaging Devices in Radiation Therapy (방사선치료시 전자포털영상장치를 이용한 잡음전력스펙트럼 방법론 측정비교)

  • Son, Soon-Yong;Choi, Kwan-Woo;Jeong, Hoi-Woun;Kwon, Kyung-Tae;Kim, Ki-Won;Lee, Young-Ah;Son, Jin-Hyun;Min, Jung-Whan
    • Journal of radiological science and technology
    • /
    • v.39 no.1
    • /
    • pp.99-105
    • /
    • 2016
  • The noise power spectrum (NPS) is one of the most general methods for measuring the noise amplitude and the quality of an image acquired from a uniform radiation field. The purpose of this study was to compare different NPS methodologies by using megavoltage X-ray energies. The NPS evaluation methods in diagnostic radiation were applied to therapy using the International Electro-technical Commission standard (IEC 62220-1). Various radiation therapy (RT) devices such as TrueBeam$^{TM}$(Varian), BEAMVIEW$^{PLUS}$(Siemens), iViewGT(Elekta) and Clinac$^R$ iX (Varian) were used. In order to measure the region of interest (ROI) of the NPS, we used the following four factors: the overlapping impact, the non-overlapping impact, the flatness and penumbra. As for NPS results, iViewGT(Elekta) had the higher amplitude of noise, compared to BEAMVIEW$^{PLUS}$ (Siemens), TrueBeam$^{TM}$(Varian) flattening filter, Clinac$^{R}$iXaS1000(Varian) and TrueBeam$^{TM}$(Varian) flattening filter free. The present study revealed that various factors could be employed to produce megavoltage imaging (MVI) of the NPS and as a baseline standard for NPS methodologies control in MVI.

Comparison of Horizontal and Vertical Noise Power Spectrum in Measurements by Using Various Electronic Portal Imaging Devices in Radiation Therapy (방사선치료 시 전자포털 영상장치를 이용한 잡음전력스펙트럼 수평 및 수직 측정비교)

  • Kim, Ki-Won;Choi, Kwan-Woo;Jeong, Hoi-Woun;Jang, Seo-Goo;Kwon, Kyung-Tae;Son, Soon-Yong;Son, Jin-Hyun;Min, Jung-Whan
    • Journal of radiological science and technology
    • /
    • v.39 no.2
    • /
    • pp.171-176
    • /
    • 2016
  • The quality assurance (QA) is very important for diagnostic field and radiation therapy field to evaluate the characteristic of devices. The purpose of this study was to compare different NPS methodologies results which are measuring NPS with regard to horizontal and vertical directions by using megavoltage X-ray energies. The NPS evaluation methods were applied to the International Electro-technical Commission standard (IEC 62220-1). The electronic portal imaging devices (EPID) devices such as Siemens BEAMVIEW$^{PLUS}$, Elekta iViewGT and Varian Clinac$^R$ iX aS1000 were used. NPS data were expressed by corresponding each frequency about average of noise value corresponding the each frequency, and NPS were evaluated quantitatively by totaling up the noise values of average frequency which are on horizontal and vertical directions. In NPS results for Elekta iViewGT, NPS of horizontal and vertical by using 4 methods were indicated the difference of 3~5% between horizontal and vertical direction. In the results of Siemens BEAMVIEW$^{PLUS}$ and Varian Clinac$^R$ iX aS1000, the NPS of horizontal and vertical direction were indicated the difference of 15% when averaging the whole values. This study were evaluated the NPS of each devices by totaling up the noise values of average frequency which are on horizontal and vertical directions suggesting the quantitative evaluation method using the data.

Measurement of Image Quality According to the Time of Computed Radiography System (시간에 따르는 CR장비의 영상의 질평가)

  • Son, Soon-Yong;Choi, Kwan-Woo;Kim, Jung-Min;Jeong, Hoi-Woun;Kwon, Kyung-Tae;Hwang, Sun-Kwang;Lee, Ik-Pyo;Kim, Ki-Won;Jung, Jae-Yong;Lee, Young-Ah;Son, Jin-Hyun;Min, Jung-Whan
    • Journal of radiological science and technology
    • /
    • v.38 no.4
    • /
    • pp.365-374
    • /
    • 2015
  • The regular quality assurance (RQA) of X-ray images is essential for maintaining a high accuracy of diagnosis. This study was to evaluate the modulation transfer function (MTF), the noise power spectrum (NPS), and the detective quantum efficiency (DQE) of a computed radiography (CR) system for various periods of use from 2006 to 2015. We measured the pre-sampling MTF using the edge method and RQA 5 based on commission standard international electro-technical commission (IEC). The spatial frequencies corresponding to the 50% MTF for the CR systems in 2006, 2009, 2012 and 2015 were 1.54, 1.14, 1.12, and $1.38mm^{-1}$, respectively and the10% MTF for 2006, 2009, 2012, and 2015 were 2.68, 2.44, 2.44, and $2.46mm^{-1}$, respectively. In the NPS results, the CR systems showed the best noise distribution in 2006, and with the quality of distributions in the order of 2015, 2009, and 2012. At peak DQE and DQE at $1mm^{-1}$, the CR systems showed the best efficiency in 2006, and showed better efficiency in order of 2015, 2009, and 2012. Because the eraser lamp in the CR systems was replaced, the image quality in 2015 was superior to those in 2009 and 2012. This study can be incorporated into used in clinical QA requiring performance and evaluation of the performance of the CR systems.

Imaging Characteristics of Computed Radiography Systems (CR 시스템의 종류와 I.P 크기에 따른 정량적 영상특성평가)

  • Jung, Ji-Young;Park, Hye-Suk;Cho, Hyo-Min;Lee, Chang-Lae;Nam, So-Ra;Lee, Young-Jin;Kim, Hee-Joung
    • Progress in Medical Physics
    • /
    • v.19 no.1
    • /
    • pp.63-72
    • /
    • 2008
  • With recent advancement of the medical imaging systems and picture archiving and communication system (PACS), installation of digital radiography has been accelerated over past few years. Moreover, Computed Radiography (CR) which was well established for the foundation of digital x-ray imaging systems at low cost was widely used for clinical applications. This study analyzes imaging characteristics for two systems with different pixel sizes through the Modulation Transfer Function (MTF), Noise Power Spectrum (NPS) and Detective Quantum Efficiency (DQE). In addition, influence of radiation dose to the imaging characteristics was also measured by quantitative assessment. A standard beam quality RQA5 based on an international electro-technical commission (IEC) standard was used to perform the x-ray imaging studies. For the results, the spatial resolution based on MTF at 10% for Agfa CR system with I.P size of $8{\times}10$ inches and $14{\times}17$ inches was measured as 3.9 cycles/mm and 2.8 cycles/mm, respectively. The spatial resolution based on MTF at 10% for Fuji CR system with I.P size of $8{\times}10$ inches and $14{\times}17$ inches was measured as 3.4 cycles/mm and 3.2 cycles/mm, respectively. There was difference in the spatial resolution for $14{\times}17$ inches, although radiation dose does not effect to the MTF. The NPS of the Agfa CR system shows similar results for different pixel size between $100{\mu}m$ for $8{\times}10$ inch I.P and $150{\mu}m$ for $14{\times}17$ inch I.P. For both systems, the results show better NPS for increased radiation dose due to increasing number of photons. DQE of the Agfa CR system for $8{\times}10$ inch I.P and $14{\times}17$ inch I.P resulted in 11% and 8.8% at 1.5 cycles/mm, respectively. Both systems show that the higher level of radiation dose would lead to the worse DQE efficiency. Measuring DQE for multiple factors of imaging characteristics plays very important role in determining efficiency of equipment and reducing radiation dose for the patients. In conclusion, the results of this study could be used as a baseline to optimize imaging systems and their imaging characteristics by measuring MTF, NPS, and DQE for different level of radiation dose.

  • PDF