• Title/Summary/Keyword: International GNSS Service

Search Result 76, Processing Time 0.024 seconds

THE SELECTION OF GROUND STATIONS FOR IGS PRODUCTS (IGS 산출물 생성을 위한 지상국 선정에 관한 연구)

  • Jung, Sung-Wook;Baek, Jeong-Ho;Bae, Tae-Suk;Jo, Jung-Hyun;Cho, Sung-Ki;Park, Jong-Uk
    • Journal of Astronomy and Space Sciences
    • /
    • v.24 no.4
    • /
    • pp.417-430
    • /
    • 2007
  • The selection of ground stations is one of the essential process of IGS (International GNSS Service) products. High quality GPS data should be collected from the globally distributed ground stations. In this study, we investigated an effect of ground station network selection on GPS satellite ephemeris. The GPS satellite ephemeris obtained from the twelve ground station networks were analyzed to investigate the effect of selection of ground stations. For data quality check, the observations, the number of cycle slips, and multipath of pseudoranges for L1 and L2 were considered. The ideal network defined by Taylor-Karman structure and SOD (Second Order Design) were used to obtain the optimal ground station network.

Precision GPS Orbit Determination and Analysis of Error Characteristics (정밀 GPS 위성궤도 결정 및 오차 특성 분석)

  • Bae, Tae-Suk
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.27 no.4
    • /
    • pp.437-444
    • /
    • 2009
  • A bi-directional, multi-step numerical integrator is developed to determine the GPS (Global Positioning System) orbit based on a dynamic approach, which shows micrometer-level accuracy at GPS altitude. The acceleration due to the planets other than the Moon and the Sun is so small that it is replaced by the empirical forces in the Solar Radiation Pressure (SRP) model. The satellite orbit parameters are estimated with the least-squares adjustment method using both the integrated orbit and the published IGS (International GNSS Service) precise orbit. For this estimation procedure, the integration should be applied to the partial derivatives of the acceleration with respect to the unknown parameters as well as the acceleration itself. The accuracy of the satellite orbit is evaluated by the RMS (Root Mean Squares error) of the residuals calculated from the estimated orbit parameters. The overall RMS of orbit error during March 2009 was 5.2 mm, and there are no specific patterns in the absolute orbit error depending on the satellite types and the directions of coordinate frame. The SRP model used in this study includes only the direct and once-per-revolution terms. Therefore there is errant behavior regarding twice-per-revolution, which needs further investigation.

Determination of Precise Coordinates and Velocities of 142 International GNSS Service Stations to Realize Terrestrial Reference System (지구기준계 실현을 위한 142개 IGS 관측소 정밀좌표 및 속도 결정)

  • Baek, Jeong-Ho;Jung, Sung-Wook;Shin, Young-Hong;Cho, Jung-Ho;Park, Pil-Ho
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.27 no.3
    • /
    • pp.303-310
    • /
    • 2009
  • We processed seven years data of 142 IGS(International GNSS Service) stations were processed, which have been selected with an optimal network algorithm, to realize terrestrial reference system. To verify the result, a comparison with the ITRF2005 was given both in positions and velocities with transformation parameters estimation. The transformation parameters are within 4.3 mm in length, while the RMS(root mean square) difference of positions and velocities are 6.7 mm and 1.3 mm/yr in horizontal and 13.3 mm and 2.4 mm/yr in vertical, respectively, which represent good coincidences with ITRF2005. This research would help developing our own geodetic reference frame and may be applied for the global earth observations such as the global tectonics. A further improved TRF would be expected by applying various data processing strategies and with extension of data in number and observation period.

A Study on Improvement of Satellite Surveying Infrastructure through Analysis of Operation Status of GNSS CORS (GNSS 상시관측소 운영 현황 분석을 통한 위성측량 인프라 개선방안 연구)

  • Park, Joon Kyu;Um, Dae Yong
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.7 no.11
    • /
    • pp.933-940
    • /
    • 2017
  • The modern society is changing paradigm by the 4th industrial revolution. In these changes, the importance of geospatial information leading to the fusion and connection of persons and objects is increasing day by day. GNSS CORS(Continuously Operating Reference Station) plays a pivotal role in the geospatial information by providing basic data for surveying control points, mapping, navigation, geophysical research, and so on. On the other hand, the satellite surveying technologies are developing rapidly and it is necessary to investigate the status of the satellite surveying environment and search for future directions. In this study, the environment related to satellite survey by operation status of domestic and overseas CORS(Continuously Operating Reference Station) was tried to analyze. Through the research, The operation status of NGII and IGS CORS were presented. It was found that the availability ratio of multiple satellites to the CORS of NGII are lower than that of IGS CORS. Considering the improvement of positioning performance by using multiple GNSS, it is necessary to use multi-satellites in the future.

Comparison of GPS Antenna Calibration Models and Their Effects in Determination of Precipitable Water Vapors

  • Park, Kwan-Dong;Won, Ji-Hye;Ha, Ji-Hyun
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.2
    • /
    • pp.41-45
    • /
    • 2006
  • To get accurate positions of GPS antennas, one should apply phase center variations (PCV) corrections in the data processing. Until recently, relative calibrations, originally proposed by National Geodetic Survey of United States, were the international standard. However, in late 2006, International GNSS Service will switch to absolute calibration methods. In this study, we compared the position differences caused by different PCV models, and their effects on the calculations of Precipitable Water Vapor (PWV) in the atmosphere. Data from ${\sim}40$ permanent GPS stations in Korea were processed and we found that the vertical position differences reach up to 5 cm, depending on the model selected. Also the PWV values varied quite significantly: the maximum bias in the computed PWV values was ${\sim}4$ mm.

  • PDF

A Study on Developing Wide Area Differential GPS (WADGPS) in Korea (한국형 광역보정위성항법 개발에 관한 연구)

  • Kee, Chang Don;Shin, Dong Ho
    • Journal of Advanced Navigation Technology
    • /
    • v.1 no.1
    • /
    • pp.3-10
    • /
    • 1997
  • The importance of GPS was great1y increased for aviation after the completion of the GPS satellite constellation in December of 1993. The Wide Area Augmentation System (WAAS) is being developed for operational use in the United States and also a similar system, European Geostationary Navigation Overlay Service (EGNOS), is also under development in Europe. There are needs to develop Wide Area Differential GPS (WADGPS) covering Korea to complete the GNSS mentioned above. The GNSS then allows international aviation users to fly world-wide with a single avionic system. In case of DGPS, it can cover within 100km and needs many stations for serving the widely-spreaded users. But WADGPS can cover wide area via fewer stations than DGPS. In this paper we propose an Korea version of WADGPS and discuss on algorithms and performances.

  • PDF

Comparison of Numerical Orbit Integration between Runge-Kutta and Adams-Bashforth-Moulton using GLObal NAvigation Satellite System Broadcast Ephemeris

  • Son, Eunseong;Lim, Deok Won;Ahn, Jongsun;Shin, Miri;Chun, Sebum
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.8 no.4
    • /
    • pp.201-208
    • /
    • 2019
  • Numerical integration is necessary for satellite orbit determination and its prediction. The numerical integration algorithm can be divided into single-step and multi-step method. There are lots of single-step and multi-step methods. However, the Runge-Kutta method in single-step and the Adams method in multi-step are generally used in global navigation satellite system (GNSS) satellite orbit. In this study, 4th and 8th order Runge-Kutta methods and various order of Adams-Bashforth-Moulton methods were used for GLObal NAvigation Satellite System (GLONASS) orbit integration using its broadcast ephemeris and these methods were compared with international GNSS service (IGS) final products for 7days. As a result, the RMSE of Runge-Kutta methods were 3.13m and 4th and 8th order Runge-Kutta results were very close and also 3rd to 9th order Adams-Bashforth-Moulton results. About result of computation time, this study showed that 4th order Runge-Kutta was the fastest. However, in case of 8th order Runge-Kutta, it was faster than 14th order Adams-Bashforth-Moulton but slower than 13th order Adams-Bashforth-Moulton in this study.

GPS 위성 시계오차 특성의 장단기 분석

  • Son, Eun-Seong;Kim, Gyeong-Hui;Park, Gwan-Dong
    • Bulletin of the Korean Space Science Society
    • /
    • 2010.04a
    • /
    • pp.36.1-36.1
    • /
    • 2010
  • GNSS(Global Navigation Satellite System)의 하나인 GPS(Global Positioning System)를 이용한 정밀 측위에 있어서 위성의 시계오차는 측위 정확도에 매우 큰 영향을 미친다. GPS위성에는 세슘(Cs)과 루비듐(Rb)으로 이루어진 4개의 원자시계가 탑재되어있으며 현재 사용하고 있는 원자시계의 종류는 NANU(GPS Notice Advisory to Navster Users) 정보를 통해 알 수 있다. 이 연구에서는 IGS(International GNSS Service)에서 제공하는 sp3 파일과 clk 파일을 이용하여 위성시계 특성을 분석하였다. 2000년부터 2009년까지의 sp3 파일에서 각 PRN에 대한 위성시계오차 값을 추출하여 그래프로 분석하였다. 그 결과 대부분의 세슘시계는 직선형태, 루비듐시계는 곡선형태의 특성을 보였으나 일정한 경향은 나타나지 않음을 알 수 있었다. 또한 3주간의 clk 파일에서 위성시계오차 값을 추출하여 각 PRN별로 1차식과 2차식으로 접합(fitting)하고 그 결과를 비교하였다. 세슘시계의 위성시계오차 값의 경우 2차식보다 1차식이 추출 데이터와 일치함을 알 수 있었으며 세슘시계의 위성시계오차 값은 직선형태의 특성을 보이는 것을 확인 할 수 있었다. 그리고 Modified Allan Deviation(MADEV) 방법을 적용하여 분석한 결과 GPS 위성의 block 별로 서로 다른 특성이 보임을 확인할 수 있었다.

  • PDF

Accuracy Analysis of Predicted CODE GIM in the Korean Peninsula

  • Ei-Ju Sim;Kwan-Dong Park;Jae-Young Park;Bong-Gyu Park
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.12 no.4
    • /
    • pp.423-430
    • /
    • 2023
  • One recent notable method for real-time elimination of ionospheric errors in geodetic applications is the Predicted Global Ionosphere Map (PGIM). This study analyzes the level of accuracy achievable when applying the PGIM provided by the Center for Orbit Determination of Europe (CODE) to the Korean Peninsula region. First, an examination of the types and lead times of PGIMs provided by the International GNSS Service (IGS) Analysis Center revealed that CODE's two-day prediction model, C2PG, is available approximately eight hours before midnight. This suggests higher real-time usability compared to the one-day prediction model, C1PG. When evaluating the accuracy of PGIM by assuming the final output of the Global Ionosphere Map (GIM) as a reference, it was found that on days with low solar activity, the error is within ~2 TECU, and on days with high solar activity, the error reaches ~3 TECU. A comparison of the errors introduced when using PGIM and three solar activity indices-Kp index, F10.7, and sunspot number-revealed that F10.7 exhibits a relatively high correlation coefficient compared to Kp-index and sunspot number, confirming the effectiveness of the prediction model.

Accuracy Evaluation of IGS-RTS Corrections to Stand-Alone Positioning Based on GPS Code-Pseudorange Measurements

  • Kang, Min-Wook;Won, Jihye;Kim, Mi-So;Park, Kwan-Dong
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.5 no.2
    • /
    • pp.59-66
    • /
    • 2016
  • The International GNSS Service (IGS) provides the IGS-Real Time Service (IGS-RTS) corrections that can be used in stand-alone positioning in real time. In this study, the positioning accuracy before and after the application of the corrections to broadcast ephemeris by applying the IGS-RTS corrections at code pseudo-range based stand-alone positioning was compared with positioning result using precise ephemeris. The analysis result on IGS-RTS corrections showed that orbit error and clock error were 0.05 m and 0.5 ns compared to precise ephemeris and accuracy improved by about 8.5% compared to the broadcast ephemeris-applied result when the IGS-RTS was applied to positioning. Furthermore, regionally dispersed five observatories were selected to analyze the effect of external environments on positioning accuracy and positioning errors according to location and time were compared as well as the number of visible satellites and position dilution of precision by observatory were analyzed to verify a correlation with positioning error.