• Title/Summary/Keyword: International Diesel

Search Result 188, Processing Time 0.029 seconds

International Diesel Price Prediction Model based on Machine Learning with Global Economic Indicators (세계 경제 지표를 활용한 머신러닝 기반 국제 경유 가격 예측 모델 개발)

  • A-Rin Choi;Min Seo Park
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.6
    • /
    • pp.251-256
    • /
    • 2023
  • International diesel prices play a crucial role in various sectors such as industry, transportation, and energy production, exerting a significant impact on the global economy and international trade. In particular, an increase in international diesel prices can burden consumers and potentially lead to inflation. However, previous studies have primarily focused on gasoline. Therefore, this study aims to propose an international diesel price prediction model. To achieve this goal, we utilize various global economic indicators and train a linear regression model, which is one of the machine learning methodologies. This model clearly identifies the relationship between global economic indicators and international diesel prices while providing highly accurate predictions. It is expected to aid in understanding overall economic trends including market changes.

Load Control between PV Power Plants and Diesel Generators

  • Mohamed Khalil Abdalla MohamedAli;AISHA HASSAN ABDALLA HASHIM;OTHMAN KHALIFA
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.6
    • /
    • pp.33-40
    • /
    • 2024
  • Introducing renewable energy sources, such as wind and photovoltaic arrays, in microgrids that supply remote regions with electricity represents a significant leap in electricity generation. Combining photovoltaic panels and diesel engines is one of the most common ways to supply electricity to rural communities. Such hybrid systems can reduce the cost of electricity generation in these remote power systems because they use free energy to balance the power generated by diesel engines. However, the combination of renewable energy sources and diesel engines tends to complicate the sizing and control of the entire system due to the intermittent nature of renewable energy sources. This study sought to investigate this issue in depth. It proposes a robust hybrid controller that can be used to facilitate optimum power sharing between a PV power source and diesel generators based on the dynamics of the available PV energy at any given time. The study also describes a hybrid PV-diesel power plant's essential functional parts that produce electricity for a microgrid using a renewable energy source. Power control needs to be adjusted to reduce the cost of power generation.

Proposal of a new method for learning of diesel generator sounds and detecting abnormal sounds using an unsupervised deep learning algorithm

  • Hweon-Ki Jo;Song-Hyun Kim;Chang-Lak Kim
    • Nuclear Engineering and Technology
    • /
    • v.55 no.2
    • /
    • pp.506-515
    • /
    • 2023
  • This study is to find a method to learn engine sound after the start-up of a diesel generator installed in nuclear power plant with an unsupervised deep learning algorithm (CNN autoencoder) and a new method to predict the failure of a diesel generator using it. In order to learn the sound of a diesel generator with a deep learning algorithm, sound data recorded before and after the start-up of two diesel generators was used. The sound data of 20 min and 2 h were cut into 7 s, and the split sound was converted into a spectrogram image. 1200 and 7200 spectrogram images were created from sound data of 20 min and 2 h, respectively. Using two different deep learning algorithms (CNN autoencoder and binary classification), it was investigated whether the diesel generator post-start sounds were learned as normal. It was possible to accurately determine the post-start sounds as normal and the pre-start sounds as abnormal. It was also confirmed that the deep learning algorithm could detect the virtual abnormal sounds created by mixing the unusual sounds with the post-start sounds. This study showed that the unsupervised anomaly detection algorithm has a good accuracy increased about 3% with comparing to the binary classification algorithm.

EXPERIMENTAL INVESTIGATION AND COMPARISON OF SPRAY AND COMBUSTION CHARACTERISTICS OF GTL AND DIESEL FUELS

  • Kim, K.S.;Beschieru, V.;Jeong, D.S.;Lee, Y.
    • International Journal of Automotive Technology
    • /
    • v.8 no.3
    • /
    • pp.275-281
    • /
    • 2007
  • GTL (Gas To Liquid) has the potential to be used in diesel engines as a clean alternative fuel due to advantages in emission reduction, particularly soot reduction. Since the physical properties of GTL fuel differ from those of diesel fuel to some extent, studying how this difference in characteristics of GTL and diesel fuels affects spray and combustion in diesel engines is important. In this study, visual investigation of sprays and flames from GTL and diesel fuels in a vessel simulating diesel combustion was implemented. The effects of various parameters and conditions, such as injection pressure, chamber temperature and pilot injection on liquid-phase fuel length and auto-ignition delay were investigated. It was determined that GTL has a somewhat shorter liquid-phase fuel length, which explains why there is less contact between the fuel liquid-phase and flame for GTL fuel compared to diesel fuel.

A study on combustion of blended straight vegetable oil in marine diesel engine cylinders

  • Nguyen, Dai An;Tran, The Nam;Dang, Van Uy
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.8
    • /
    • pp.813-820
    • /
    • 2015
  • Straight vegetable oil (SVO) is widely recommended as fuel for diesel engines in general and especially for marine diesel engines. However, SVOs used directly as fuel for diesel engines may cause problems for the engines; SVOs blended with diesel oil are a better choice. To widen understanding of the possibility of using blended SVOs as fuel alternatives, this paper presents results of experimental research on the combustion of blended straight vegetable oil in a marine diesel engine's cylinders. Results show that the fuel combustion process have the same curves as in simulations and, in the case of using blended fuels with up to 20% palm oil, the test diesel engine technical parameters such as engine output, exhaust gas temperatures, and specific fuel consumption are very similar to those of diesel oil (DO). Based on these results, marine diesel engines are strong potential applications and particularly recommended for the use of SVO blends.

Increase of diesel car raises health risk in spite of recent development in engine technology

  • Leem, Jong Han;Jang, Young-Kee
    • Environmental Analysis Health and Toxicology
    • /
    • v.29
    • /
    • pp.9.1-9.3
    • /
    • 2014
  • Diesel exhaust particles (DEP) contain elemental carbon, organic compounds including Polyaromatic hydrocarbons (PAHs), metals, and other trace compounds. Diesel exhaust is complex mixture of thousands of chemicals. Over forty air contaminants are recognized as toxicants, such as carcinogens. Most diesel exhaust particles have aerodynamic diameters falling within a range of 0.1 to $0.25{\mu}m$. DEP was classified as a definite human carcinogen (group 1) by the International Agency for Research on Cancer at 2012 based on recently sufficient epidemiological evidence for lung cancer. Significant decreases in DEP and other diesel exhaust constituents will not be evident immediately, and outworn diesel car having longer mileage still threatens health of people in spite of recent remarkable development in diesel engine technology. Policy change in South Korea, such as introduction of diesel taxi, may raise health risk of air pollution in metropolitan area with these limitations of diesel engine. To protect people against DEP in South Korea, progressive strategies are needed, including disallowance of diesel taxi, more strict regulation of diesel engine emission, obligatory diesel particulate filter attachment in outworn diesel car, and close monitoring about health effects of DEP.

Study on Simulation of Water Cooling Heat Exchanger for Small Marine Diesel Engine (소형 선박용 디젤엔진의 수냉식 열교환기 해석 연구)

  • Yang, Young-Joon;Sim, Han-Sub
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.6
    • /
    • pp.201-207
    • /
    • 2012
  • This study was carried out to improve the design of heat exchanger for small marine diesel engine. As air pollutants emitted from small marine diesel engine become international problem, IMO(International Marine Organization) tried to establish severe regulations for NOx reduction. The formation of NOx is affected by cooling system, for instance, such as intercooler, heat exchanger, exhaust manifold, and therefore cooling systems are one of essential parts for design of small marine diesel engine. In this study, heat exchanger for small marine diesel engine was modeled and simulated using CATIA V5R19 and ANSYS FLUENT V.13. Thermal flow simulation for heat exchanger was performed to find the optimal design. As the results, maximum velocity of engine coolant in shell inside was 9.1m/s and it was confirmed that outlet temperature and temperature drop for engine coolant could be calculated by simulating proportional relations of temperature between engine coolant and sea water.

Bio Sparging Column Experiment for Remediation of Diesel Contaminated Groundwater (디젤오염 지하수 정화를 위한 공기주입정화법 칼럼 실험)

  • Chang Soon-Woong;Lee Si-Jin;Song Jung-Hoon;Kwon Soo-Youl
    • Journal of Environmental Science International
    • /
    • v.13 no.12
    • /
    • pp.1059-1065
    • /
    • 2004
  • Bio sparging experiments were conducted in a laboratory column to investigate the potential removal of diesel contaminated groundwater. The objectives in this study were (a) to determine the extent of diesel degradation in laboratory columns under supplement of nutrient; (b) to determine the effect of variation of air flow in the removal of diesel and (c) to evaluate the potential enhancement of diesel degradation as a function of temperature. Our results showed that the nutrient supplement and higher air flow greatly enhanced diesel degradation. However, the variation of water temperature examined slightly increased degradation rate of diesel fuel.

A Comparative Study on the Performance and Emission Analysis of a Dual Fuelled Diesel Engine with Karanja Biodiesel and Natural Gas

  • Singh, Ashish Kumar;Kumar, Naveen;Amardeep, Amardeep;Kumar, Parvesh
    • International Journal of Advanced Culture Technology
    • /
    • v.4 no.1
    • /
    • pp.10-18
    • /
    • 2016
  • In the present study, a single cylinder four stroke dual fuel diesel engine was tested to investigate the performance and emission characteristics of various test fuels. The engine was tested in dual fuel mode using diesel and Karanja biodiesel blends as pilot fuel along with Natural gas as primary fuel with a constant gas flow rate under different loading conditions. From the experimentation it was found that smoke opacity and oxides of nitrogen (NOx) are at low level for all the prepared test fuels in dual fuel mode but the emissions of carbon monoxide (CO), carbon dioxide ($CO_2$) and hydrocarbon (HC) were found higher. In comparison to diesel fuel, by increasing the blend percentage different emission parameters are found to be reduced. At different loading conditions all the test fuels show poor performance in dual fuel mode of operation when compared with single mode of operation with diesel and biodiesel. With increase in gas flow rates, except (NOx) and smoke emissions, the other emission parameters like CO, HC and $CO_2$ values increased for all test fuels. Again, all blended fuels showed lower performance compared to diesel. The maximum pilot fuel savings for diesel was found decreasing with the increase in karanja biodiesel. From the present work it may be concluded that Karanja biodiesel with Natural gas in dual mode can be can used as promising alternative for diesel with some required engine modifications and further research must be carried out to minimize the emissions of CO, HC and $CO_2$.

EXPERIMENTAL STUDY ON EMISSION CHARACTERISTICS AND ANALYSIS BY VARIOUS OXYGENATED FUELS IN A D.I. DIESEL ENGINE

  • CHOI S. H.;OH Y. T.
    • International Journal of Automotive Technology
    • /
    • v.6 no.3
    • /
    • pp.197-203
    • /
    • 2005
  • This paper investigates the effect of oxygen composition in mixed fuel on the exhaust emissions for the direct injection diesel engine. These effects were tested to estimate the change in engine performance and exhaust emission characteristics when commercial diesel fuel and oxygenates blended fuels at a certain fuel and mixed ratio are used. Individual hydrocarbons $(C_1-C_6)$ in exhaust gases, as well as the total amount of hydrocarbons, were analyzed by using gas chromatography to find the mechanism by which smoke emission was remarkably reduced for various oxygenated fuels. The chromatograms between a diesel fuel and a diesel fuel blended DGM (diethylene glycol dimethyl ether), MTBE (methyl tert-butyl ether) and EGBE (ethylene glycol mono-n-butyl ether) were compared. The results showed that the number of individual hydrocarbons as well as the total number of hydrocarbons of oxygenated fuel reduced more remarkably than those of diesel fuel.