• Title/Summary/Keyword: International Astronomy

Search Result 266, Processing Time 0.039 seconds

MEASURING THE CORE SHIFT EFFECT IN AGN JETS WITH THE EXTENDED KOREAN VLBI NETWORK

  • JUNG, TAEHYUN;DODSON, RICHARD;HAN, SEOG-TAE;RIOJA, MARIA J.;BYUN, DO-YOUNG;HONMA, MAREKI;STEVENS, JAMIE;VICENTE, PABLO DE;SOHN, BONG WON
    • Journal of The Korean Astronomical Society
    • /
    • v.48 no.5
    • /
    • pp.277-284
    • /
    • 2015
  • We present our efforts for extending the simultaneous multi-frequency receiver system of the Korean Very Long Baseline Interferometry (VLBI) Network (KVN) to global baselines in order to measure the frequency-dependent position shifts in Active Galactic Nuclei (AGN) jets, the so called core shift effect, with an unprecedented accuracy (a few micro-arcseconds). Millimeter VLBI observations with simultaneous multi-frequency receiver systems, like those of the KVN, enable us to explore the innermost regions of AGN and high precision astrometry. Such a system is capable of locating the frequency dependent opacity changes accurately. We have conducted the feasibility test-observations with the interested partners by implementing the KVN-compatible systems. Here we describe the science case for measuring the core shift effect in the AGN jet and report progress and future plans on extending the simultaneous multi-frequency system to global baselines.

INTERNATIONAL COOPERATION OF THE COSMIC INFRARED BACKGROUND EXPERIMENT (적외선 우주배경복사 관측 실험 국제 공동 연구)

  • Lee, D.H.;Nam, U.W.;Lee, S.;Jin, H.;Yuk, I.S.;Kim, K.H.;Pak, S.
    • Publications of The Korean Astronomical Society
    • /
    • v.21 no.2
    • /
    • pp.21-26
    • /
    • 2006
  • A Korean team (Korea Astronomy and Space Science Institute, Korea Basic Science Institute, and Kyung Hee University) takes part in an international cooperation project called CIBER (Cosmic Infrared Background ExpeRiment), which has begun with Jet Propulsion Laboratory (JPL) in USA and Institute of Space and Astronautical Science (ISAS) in Japan. CIBER is a rocket-borne instrument, of which the scientific goal is to measure the cosmic near-infrared extra-galactic background to search for signatures of primordial galaxy formation. CIBER consists of a wide-field two-color camera, a low-resolution absolute spectrometer, and a high-resolution narrow-band imaging spectrometer. The Korean team is in charge of the ground support electronics and manufacturing of optical parts of the narrow-band spectrometer, which will provide excellent opportunities for science and technology to Korean infrared groups.

VLBI Astrometry with Source Frequency Phase Referencing in KVN

  • Jung, Tae-Hyun;Rioja, Maria;Dodson, Richard;Sohn, Bong-Won
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.1
    • /
    • pp.69.1-69.1
    • /
    • 2011
  • The multi-band receiving feed which is one of the unique characteristics of the Korean VLBI Network (KVN) system compare to the other VLBI network enables to study precise astrometry with a source frequency phase referencing (SFPR) techniques. SFPR almost perfectly compensates the dominant non-dispersive tropospheric fluctuations by observing sources with multi-frequency simultaneously, and it also corrects the dispersive ionospheric fluctuations by adding a slow source-switching observation. In this talk, I will present the results from the KVN astrometric observations with SFPR and the achievable astrometric accuracy in KVN will be discussed.

  • PDF

Development Status of the SPICA/FPC

  • Pyo, Jeonghyun;Jeong, Woong-Seob;Lee, Dae-Hee;Matsumoto, Toshio;Moon, Bongkon;Tsumura, Kohji;Park, Kwijong;Park, Sung-Joon;Park, Youngsik;Kim, Il-Jung;Park, Won-Kee;Han, Wonyong;Im, Myungshin;Lee, Hyung Mok;Lee, Jeong-Eun
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.38 no.2
    • /
    • pp.82.1-82.1
    • /
    • 2013
  • The SPICA (SPace Infrared Telescope for Cosmology & Astrophysics) project is a next-generation infrared space telescope optimized for mid- and far-infrared observation with a cryogenically cooled 3m-class telescope. Owing to unprecedented sensitivity and high spatial resolution, the focal plane instruments are expected to perform the confusion-limited observation. The SPICA will challenge to reveal many astronomical key issues from the star-formation history of the universe to the planetary formation. The Korean 5contribution to SPICA as an international collaboration is the development of the near-infrared instrument, FPC (Focal Plane Camera). The Korean consortium for FPC proposed a key system instrument for the purpose of a fine guiding (FPC-G) complementing the AOCS (Attitude and Orbit Control System). The back-up instrument of FPC-G, FPC-S will be responsible for the scientific observations as well. Through the international review process, we have revised the scientific programs and made the feasibility study for the fine guiding system. Here, we report the current status of SPICA/FPC project.

  • PDF

Performance Analysis of the First Korean Satellite Laser Ranging System

  • Choi, Man-Soo;Lim, Hyung-Chul;Choi, Eun-Jung;Park, Eunseo;Yu, Sung-Yeol;Bang, Seong-Cheol;Kim, Tae-Keun;Kim, Young-Rok;Kim, Dong-Jin;Seong, Kipyung;Ka, Neung-Hyun;Choi, Cer-Hee;Hwang, Joo-Yeon;Kucharski, Daniel;Han, In-Woo;Nah, Jakyoung;Jang, Jung-Guen;Jang, Bi-Ho;Lee, Sang-Jung
    • Journal of Astronomy and Space Sciences
    • /
    • v.31 no.3
    • /
    • pp.225-233
    • /
    • 2014
  • The first Korean satellite laser ranging (SLR) system, Daedeok SLR station (DAEK station) was developed by Korea Astronomy and Space Science Institute (KASI) in 2012, whose main objectives are space geodesy researches. In consequence, Korea became the $25^{th}$ country that operates SLR system supplementing the international laser tracking network. The DAEK station is designed to be capable of 2 kHz laser ranging with precision of a few mm both in daytime and nighttime observation of satellites with laser retro-reflector array (LRA) up to the altitude of 25,000 km. In this study, characteristics and specifications of DAEK station are investigated and its data quality is evaluated and compared with International Laser Ranging Service (ILRS) stations in terms of single-shot ranging precision. The analysis results demonstrated that the DAEK station shows good ranging performance to a few mm precision. Currently, the DAEK station is under normal operations at KASI headquarters, however, it will be moved to Sejong city in 2014 to function as a fundamental station for space geodesy researches in combination with other space geodesy systems (GNSS, VLBI, DORIS, etc.).

SIMULATION OF THE TISSUE EQUIVALENT PROPORTIONAL COUNTER IN THE INTERNATIONAL SPACE STATION WITH GEANT4 (Geant4를 활용한 국제우주정거장 내의 조직등가비례계수기 모의 실험)

  • Pyo, Jeong-Hyun;Lee, Jae-Jin;Nam, Uk-Won;Kim, Sung-Hwan;Kim, Hyun-Ok;Lim, Chang-Hwy;Park, Kwi-Jong;Lee, Dae-Hee;Park, Young-Sik;Moon, Myung-Kook
    • Publications of The Korean Astronomical Society
    • /
    • v.27 no.3
    • /
    • pp.81-86
    • /
    • 2012
  • The International Space Station (ISS) orbits the Earth within the inner radiation belt, where high-energy protons are produced by collisions of cosmic rays to the upper atmosphere. About 6 astronauts stay in the ISS for a long period, and it should be important to monitor and assess the radiation environment in the ISS. The tissue equivalent proportional counter (TEPC) is an instrument to measure the impact of radiation on the human tissue. KASI is developing a TEPC as a candidate payload of the ISS. Before the detailed design of the TEPC, we performed simulations to test whether our conceptual design of the TEPC will work propertly in the ISS and to predict its performance. The simulations estimated that the TEPC will measure the dose equivalent of about 1:1 mSv during a day in the ISS, which is consistent with previous measurements.

ASTRONOMY FOR DEVELOPMENT; APPROACHES IN ASIA

  • USUDA-SATO, KUMIKO;TOMITA, AKIHIKO
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.731-733
    • /
    • 2015
  • As task force members, we present the International Astronomical Union (IAU) Office of Astronomy for Development (OAD) and its task forces. Each task force calls for proposals every year and reviews the submitted proposals. From the point of view of "Astronomy for a Better World", the vision of the OAD, our aim is to reach diverse people including those such as the visually impaired. Our efforts meet one of the goals of the OAD and some OAD-funded projects.

Feasibility Study of a Future Korean Space Telescope

  • Lee, Dae-Hee;Ree, Chang Hee;Song, Yong-Seon;Jeong, Woong-Seob;Moon, Hong-Kyu;Kim, Min Gyu;Pyo, Jeonghyun;Moon, Bongkon;Park, Won-Kee
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.1
    • /
    • pp.39.4-40
    • /
    • 2017
  • According to the Korean government's Long-term Space Development Plan 2040, "Creative space science research" is included in a statement to investigate the origin and evolution of the universe by conducting a series of Korean space telescope missions: launch of space telescopes on a small satellite and an international collaboration explorer by 2020, a mid-size domestic space telescope by 2030, and a large size Korea leading international space telescope by 2040. We studied the feasibility of the future Korean Space Telescope (KST) for a mid-size domestic satellite platform. In order to pursue the uniqueness of the science program, we consider a wide range of observing wavelength (0.2um ~ 2.0um) with a spectral resolution of R~6 in the NUV and optical bands, and R~30 for NIR, utilizing an off-axis TMS(Three Mirror System) optics with a wide field of view ($2{\times}4$ degrees) which is optimized for ultra-low surface brightness sources. The main science goals of the mission include investigations of the galaxy formation, cosmic web, and the cosmic background radiation in the NUV-NIR regions. In this paper, we present the science cases and several technical challenges to be resolved along with the future milestones for the success of the KST mission.

  • PDF

Status Report of SPICA/FPC

  • Jeong, Woong-Seob;Matsumoto, Toshio;Lee, Dae-Hee;Pyo, Jeong-Hyun;Park, Sung-Joon;Moon, Bong-Kon;Ree, Chang-Hee;Park, Young-Sik;Han, Won-Yong;Lee, Hyung-Mok;Im, Myung-Shin;SPICA/FPC Team, SPICA/FPC Team
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.2
    • /
    • pp.126.1-126.1
    • /
    • 2011
  • The SPICA (SPace Infrared Telescope for Cosmology & Astrophysics) project is a next-generation infrared space telescope optimized for mid- and far-infrared observation with a cryogenically cooled 3m-class telescope. Owing to unique capability of focal plane instruments onboard SPICA, it will enable us to resolve many astronomical key issues from the star-formation history of the universe to the planetary formation. The FPC (Focal Plane Camera) is a Korean-led near-infrared instrument as an international collaboration. Korean consortium for FPC proposed a key instrument responsible for a fine guiding (FPC-G). The back-up of FPC-G will make scientific observations as well. We have examined the legacy science programs for FPC and performed the feasibility study for the fine guiding system. Recently, the international review process is now in progress, in order to make a selection of the focal plane instruments. Here, we report the current status of SPICA/FPC project.

  • PDF