• Title/Summary/Keyword: Internal wave detection

Search Result 35, Processing Time 0.026 seconds

Preliminary Study of Effect of Internal Wave to Phytoplankton Distribution in the Lombok Strait and Adjacent Areas

  • Arvelyna, Yessy;Oshima, Masaki
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.1246-1248
    • /
    • 2003
  • Internal wave with a soliton-like, large amplitudes within several kilometers, is frequently observed in the sea surface caused by tidal rectification due to sill or rough topographic changes. Internal waves can perturb current and density field, initiate bottom sediment re -suspension and mix nutrients to photic zone. Previous studies indicate that the appearance of internal wave in the Lombok Strait have been detected in SAR image data. This paper studies effect of internal wave in the Lombok Strait to chlorophyll distribution in the surrounded areas using SeaWiFS and ERS SAR images data during 1996-2001 periods. The preliminary result concludes that the internal waves presumably affect phytoplankton distribution spreading southeastward in the coast off Bali Island. The distribution of phytoplankton at southern coastline off Bali Island when internal wave occurred is elongated and distributed further to westward (from 8.8$^{\circ}$ to 10.7$^{\circ}$LS) than the area when internal wave did not occur on August 2000 (from 9.25$^{\circ}$ to 10.25$^{\circ}$LS) as shown in figure 3. It shown that the surface phytoplankton concentration near coastal area, i.e. from 8.8$^{\circ}$ to 9.25$^{\circ}$ LS, increased when internal wave is occurred.

  • PDF

An Experimental Study on the Propagation Characteristics of Ultrasonic Wave in Watermelon (수박에서의 초음파 전파 특성에 관한 실험적 연구)

  • 장경영;김만수;조한근
    • Journal of Biosystems Engineering
    • /
    • v.23 no.6
    • /
    • pp.615-620
    • /
    • 1998
  • The nondestructive internal quality evaluation of agricultural products has been strongly required from the needs for individual inspection. In recent, ultrasonic wave has been considered as a solution for this problem. It transmit well through most materials and can handle safely and easily. However, specially in a watermelon, it is known that general frequency band (higher than 20kHz) ultrasonic waves do not transmitted well due to severe attenuation. The objectives of this study were to find out the proper waveform and frequency of the ultrasonic waves that transmit well inside the watermelon, and to analyze the transmitted waveform in order to make clear the structure of wave propagation in watermelon. The result of several experiments showed that 2kHz shear wave was the most suitable for the detection of internal cavity in the watermelon. Also, it was found that the surface wave did not influence the directly transmitted bulk wave. These results could be a basis of application of ultrasonic wave on the evaluation of internal quality of the watermelon.

  • PDF

Fast Defect Detection of PCB using Ultrasound Thermography (초음파 서모그라피를 이용한 빠른 PCB 결함 검출)

  • Cho, Jai-Wan;Jung, Hyun-Kyu;Seo, Yong-Chil;Jung, Seung-Ho;Kim, Seung-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.273-275
    • /
    • 2005
  • Active thermography is being used since several years for remote non-destructive testing. It provides thermal images for remote detection and imaging of damages. Also, it is based on propagation and reflection of thermal waves which are launched from the surface into the inspected component by absorption of modulated radiation. For energy deposition, it use external heat sources (e.g., halogen lamp or convective heating) or internal heat generation (e.g., microwaves, eddy current, or elastic wave). Among the external heat sources, the ultrasound is generally used for energy deposition because of defect selective heating up. The heat source generating a thermal wave is provided by the defect itself due to the attenuation of amplitude modulated ultrasound. A defect causes locally enhanced losses and consequently selective heating up. Therefore amplitude modulation of the injected ultrasonic wave turns a defect into a thermal wave transmitter whose signal is detected at the surface by thermal infrared camera. This way ultrasound thermography(UT) allows for selective defect detection which enhances the probability of defect detection in the presence of complicated intact structures. In this paper the applicability of UT for fast defect detection is described. Examples are presented showing the detection of defects in PCB material. Measurements were performed on various kinds of typical defects in PCB materials (both Cu metal and non-metal epoxy). The obtained thermal image reveals area of defect in row of thick epoxy material and PCB.

  • PDF

Ultrasonic Inspection of Internal Defects of Potatoes (초음파를 이용한 감자의 내부결함검사)

  • Kim, In-Hoon;Jung, Kyu-Hong;Jang, Kyung-Young;Seo, Ryun;Kim, Man-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.3
    • /
    • pp.82-88
    • /
    • 2003
  • The nondestructive internal quality evaluation of agricultural products has been strongly required from the needs for individual inspection. Recently, the ultrasonic wave has been considered as a solution fur this problem, and an ultrasonic system was constructed for the ultrasonic NDE of fruits and vegetables in our previous work. In this paper, the practical applicability of our ultrasonic system is tested fur the inspection of internal defects (central cavity) in Atlantic potato. Sound speed and RMS of transmitted ultrasonic wave signal were measured and classification algorithm using 2 dimensional stochastic analysis. was presented. Experimental results showed greater value of sound speed and RMS (root mean square) of transmitted signal in normal samples than in abnormal samples with cavity. Also a stochastic method to distinguish normal and abnormal showed fault detection rate less than 5%.

Fast Defect Detection of PCB using Ultrasound Thermography (초음파 서모그라피를 이용한 빠른 PCB 결함 검출)

  • Cho Jai-Wan;Seo Yong-Chil;Jung Seung-Ho;Kim Seungho;Jung Hyun-Kyu
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.55 no.2
    • /
    • pp.68-71
    • /
    • 2006
  • Active thermography has been used for several years in the field of remote non-destructive testing. It provides thermal images for remote detection and imaging of damages. Also, it is based on propagation and reflection of thermal waves which are launched from the surface into the inspected component by absorption of modulated radiation. For energy deposition, it use external heat sources (e.g., halogen lamp or convective heating) or internal heat generation (e.g., microwaves, eddy current, or elastic wave). Among the external heat sources, the ultrasound is generally used for energy deposition because of defect selective heating up. The heat source generating a thermal wave is provided by the defect itself due to the attenuation of amplitude modulated ultrasound. A defect causes locally enhanced losses and consequently selective heating up. Therefore amplitude modulation of the injected ultrasonic wave turns a defect into a thermal wave transmitter whose signal is detected at the surface by thermal infrared camera. This way ultrasound thermography(UT) allows for selective defect detection which enhances the probability of defect detection in the presence of complicated intact structures. In this paper the applicability of UT for fast defect detection is described. Examples are presented showing the detection of defects in PCB material. Measurements are performed on various kinds of typical defects in PCB materials (both Cu metal and non-metal epoxy). The obtained thermal image reveals area of defect in row of thick epoxy material and PCB.

An Example of Internal Wave Detection in North Coastal Waters of Cheju Island Using a SAR Image (SAR를 이용한 제주도 북부해역에서의 내부파 관측예)

  • Kim, Tae-Rim;Won, Joong-Sun
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.4 no.1
    • /
    • pp.18-24
    • /
    • 1999
  • The satellite image acquired by RADARSAT SAR on August 15, 1996 reveals internal waves in north coastal waters of Cheju Island. It is indicated from the image data, the tidal elevation data, and the bottom topography data, the internal waves seem to be generated by interaction between shallow bottom and tidal currents travelling in the stratified water in the summer time during the tidal changeovers from ebb to flood. The internal waves generated in such condition show patterns of trains of solitons. Probable amplitude of observed solitons is calculated using estimation of the soliton wave length from SAR image data and K-dV equation. Detection of the internal waves is very significant not only to military strategist for underwater maneuvers such as operation of submarines, but also to physical and biological oceanographers. Temporal and spatial variation of the internal waves are needed to be measured by simultaneous in-situ field study together with SAR to examine the nature of these internal waves.

  • PDF

A Study on Scattered Fields Analysis of Ultrasonic SH-Wave from Multi-Defects by Boundary Element Method (경계요소법을 이용한 다중결함의 SH형 초음파 산란장 해석에 관한 연구)

  • Lee, Jun-Hyeon;Lee, Seo-Il
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.23 no.11 s.170
    • /
    • pp.1878-1885
    • /
    • 1999
  • Ultrasonic technique which is one of the most common nondestructive evaluation techniques has been applied to evaluate the integrity of structures by analyzing the characteristic of scattering sign al from internal defects. Therefore, a numerical analysis of ultrasonic scattering field due to defect profiles is absolutely needed for the accurate, quantitative estimation of internal defects. In this paper, the SH-wave scattering by multi-cavity defects and inclusion using Elastodynamic Boundary Element Method is studied. The effects of shape and distance of defects on transmitted and reflected fields are considered. The interaction of multi-cavity defects in SH-wave scattering is also investigated. Numerical calculations by the BEM have been carried out to predict near field solution of scattered fields of ultrasonic SH-wave. The presented results can be used to improve the detection sensitivity and pursue quantitative nondestructive evaluation for inverse problem.

A Technique for Defect Detection of Condenser Tube in Support Plate Region using Guided Wave (유도초음파를 이용한 복수기 튜브지지판 영역에서의 결함검출기법)

  • Kim, Yong-Kwon;Park, Ik-Keun;Park, Sae-Jun;Ahn, Yeon-Shik;Gil, Doo-Song
    • Journal of Welding and Joining
    • /
    • v.30 no.6
    • /
    • pp.36-41
    • /
    • 2012
  • General condensers consist of many tubes supported by tube sheets and support plates to prevent the deflection of the condenser tubes. When a fluid at high pressure and temperature runs over the tubes for the purpose of transferring heat from one medium to another, the tubes vibrate and their surface comes into contact with the support plates. This vibration causes damage to the tubes, such as cracks and wear. We propose an ultrasonic guided wave technique to detect the above problems in the support plate region. In the proposed method, the ultrasonic guided wave mode, L(0,1), is excited using an internal transducer probe from a single position at the end of the tube. In this paper, we present a preliminary experimental verification using a super stainless tube and show that the defects can be discriminated from the support signals in the support region.

Development of an Expert System for Nondestructive Evaluation of Tunnel Lining (터널 라이닝의 비파괴 평가를 위한 전문가시스템 개발)

  • 김문겸;허택녕;이재영;김도훈
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1998.10a
    • /
    • pp.413-420
    • /
    • 1998
  • In this study, an expert system is developed to evaluate a safety of tunnel structures. Using a dynamic finite element analysis module, this expert system predicts dynamic responses of a concrete lining surface which a transient force is applied on and estimates the condition between the concrete lining and surrounding ground. The evaluation parameter values of the module are multi-reflected wave frequency and amplitude of the dynamic responses. The multi-reflected wave frequency represents the depth of concrete lining, and the other parameter, the amplitude of the frequency, is utilized for detecting the internal flaws. A comparison of the dynamic responses between numerical and experimental model test verifies an effectiveness of this system. By this expert system, the safety of tunnel structures and the detection of internal flaws of concrete linings are estimated quantitatively.

  • PDF