• 제목/요약/키워드: Internal valve

검색결과 342건 처리시간 0.025초

Mitral valve regurgitation

  • Lombard, Christophe W.
    • 한국임상수의학회:학술대회논문집
    • /
    • 한국임상수의학회 2009년도 춘계학술대회
    • /
    • pp.37-43
    • /
    • 2009
  • PDF

공압구동용 솔레노이드밸브의 동특성 해석 (Analysis of Dynamic Characteristics of Pneumatic Driving Solenoid Valve)

  • 장제선;김병훈;한상엽
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2011년도 제37회 추계학술대회논문집
    • /
    • pp.731-736
    • /
    • 2011
  • 우주발사체 추진기관 공급계에서 공압구동용 솔레노이드밸브는 제어시시템의 명령이 주어지면 구동가스 배관의 통로를 개폐해서 공압제어장치를 작동시킨다. 공압구동용 솔레노이드밸브의 제작에 앞서 설계검증 및 기본적인 작동특성을 분석하기 위해 AMESim 상용코드를 이용하여 해석모델을 수립하였다. 입구압력에 따른 작동시간을 시험결과와 비교하여 모델을 검증하였고 내부유동 해석결과 (FLUENT)를 이용하여 3차원 형상을 고려하여 모델의 정확도를 높였다. 밸브모델을 이용하여 다양한 설계변수에 따른 밸브의 개폐압력, 작동시간을 계산하여 설계인자 검증 및 작동성능을 분석하였다. 설계변수인 컨트롤밸브의 시트 형상, 주 밸브와 배출밸브의 시트 형상, 실링 직경비, 컨트롤 캐비티부피에 대해 밸브의 동특성 해석을 수행하였다. 해석을 통해 밸브 개폐작동시간, 작동성능, 개방압력을 예상하였다. 본 연구 결과는 한국형발사체 공급계 공압구동용 솔레노이드밸브의 설계/해석능력을 확보하고 밸브의 개발과정에서 효율성을 높일 수 있으며 파생형 밸브의 설계 및 선행연구에 적용할 수 있을 것으로 판단된다.

  • PDF

해양구조물용 고압 컨트롤 밸브에 대한 기초 연구 (A Fundamental Study on Offshore Structures of high pressure control valve)

  • 이치우;장성철
    • 한국생산제조학회지
    • /
    • 제19권6호
    • /
    • pp.883-888
    • /
    • 2010
  • This study have goal with conceptual design for Offshore Structures of high pressure control valve for localization. Ball valve for development accomplished with flow analysis based on provision of ANSI B16.34, ANSI B16.10, ANSI B16.25 In order to localize the Offshore Structures high pressure control valve. Numerical simulation using CFD (Computational Fluid Dynamic) in order to predict a mass flow rate and a flow coefficient form flow dynamic point of view. The working fluid assumed the glycerin (C3H8O3). The valve inlet and outlet setup a pressure boundary condition. The outlet pressure was fixed by atmospheric pressure and calculated until increasing 1bar to 10bar. CFD analysis used STAR-CCM+ which is commercial code and Governing equations were calculated by moving mesh which is rotated 90 degrees when ball valve operated opening and closing in 1 degree interval. The result shows change of mass flow rate according to opening and closing angle of valve, Flow decrease observed open valve that equal percentage flow paten which is general inclination of ball valve. Relation with flow and flow coefficient can not be proportional according to inlet pressure when compare with mass flow rate. Because flow coefficient have influence in flow and pressure difference. Namely, flow can be change even if it has same Cv value. The structural analysis used ANSYS which is a commercial code. Stress analysis result of internal pressure in valve showed lower than yield strength. This is expect to need more detail design and verification for stem and seat structure.

해양구조물용 고압 컨트롤 밸브 수치해석 (A Numerical Analysis on High Pressure Control Valve for Offshore)

  • 이중섭;장성철;정휘원;남태희
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2008년도 하계학술발표대회 논문집
    • /
    • pp.1195-1200
    • /
    • 2008
  • This study have goal with conceptual design for Offshore Structures of high pressure control valve for localization. Ball valve for development accomplished with flow analysis based on provision of ANSI B16.34, ANSI B16.10, ANSI B16.25 In order to localize the Offshore Structures high pressure control valve. Numerical simulation using CFD(Computational Fluid Dynamic) in order to predict a mass flow rate and a flow coefficient form flow dynamic point of view. The working fluid assumed the glycerin($C_3H_8O_3$). The valve inlet and outlet setup a pressure boundary condition. The outlet pressure was fixed by atmospheric pressure and calculated until increasing 1bar to 10bar. CFD analysis used STAR-CCM+ which is commercial code and Governing equations were calculated by moving mesh which is rotated 90 degrees when ball valve operated opening and closing in 1 degree interval. The result shows change of mass flow rate according to opening and closing angle of valve. Flow decrease observed open valve that equal percentage flow paten which is general inclination of ball valve. Relation with flow and flow coefficient can not be proportional according to inlet pressure when compare with mass flow rate. Because flow coefficient have influence in flow and pressure difference. Namely, flow can be change even if it has same Cv value. The structural analysis used ANSYS which is a commercial code. Stress analysis result of internal pressure in valve showed lower than yield strength. This is expect to need more detail design and verification for stem and seat structure.

  • PDF

석유화학용 Ball Valve 유동 및 강도 수치해석 (A Numerical Analysis on Flow and Strength of Ball Valve for petrochemistry)

  • 이중섭;정휘원;장성철;남태희;박중호;윤소남
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2008년도 동계학술발표대회 논문집
    • /
    • pp.357-362
    • /
    • 2008
  • This study have goal with reverse engineering for petrochemistry of high pressure ball valve for localization. Ball valve for development accomplished with flow analysis based on provision of ANSI B16.34, ANSI B16.10, ANSI B16.25 In order to localize the petrochemistry high pressure control valve. Numerical simulation using CFD(Computational Fluid Dynamic) in order to predict a mass flow rate and a flow coefficient form flow dynamic point of view. The working fluid assumed the water($H_2O$). The valve inlet and outlet setup a pressure boundary condition. The outlet pressure was fixed by atmospheric pressure and calculated inlet velocity 5m/s. CFD solver used STAR-CCM+ which is commercial code. The result shows change of mass flow rate according to opening and closing angle of valve. Flow decrease observed open valve that equal percentage flow paten which is general inclination of ball valve. The structural analysis used ANSYS which is a commercial code. Stress analysis result of internal pressure in valve showed lower than yield strength. This is expect to need more detail design and verification for stem and seat structure.

  • PDF

Aortic Valve Replacement and Concomitant Multi-Vessel Coronary Artery Bypass: The Impact of Using the Bilateral Internal Thoracic Arteries on Early and Late Clinical Outcomes

  • Muhyung Heo;Myoung Young Kim;Jun Ho Lee;Suryeun Chung;Kiick Sung;Wook Sung Kim;Yang Hyun Cho
    • Journal of Chest Surgery
    • /
    • 제56권3호
    • /
    • pp.197-203
    • /
    • 2023
  • Background: The survival benefit of coronary artery bypass grafting (CABG) using the bilateral internal thoracic arteries (BITA) is well known; however, the role of BITA in concomitant aortic valve replacement (AVR) and CABG has not been studied. Methods: We retrospectively reviewed patients who underwent concomitant AVR and CABG. Cases not using an internal thoracic artery and less than 2 bypass grafts were excluded. We enrolled 114 patients in this study. The mean follow-up duration was 61.5±43.5 months. Results: Forty patients (35.1%) underwent CABG with a single internal thoracic artery (SITA) and 74 patients (64.9%) underwent CABG with BITA. The preoperative clinical characteristics were not significantly different between the 2 groups, with the exception of a higher prevalence of atrial fibrillation in the SITA group. Postoperative mortality and morbidity were not significantly higher in the BITA group than in the SITA group. In the univariable analysis, the survival of the BITA group was similar to that of the SITA group (p=0.157). Multivariable analysis showed that only mean age was a predictor of death (p=0.042), but using BITA was not an independent predictor (p=0.094). In low-risk patients whose preoperative ejection fraction was >45%, the survival of the BITA group was significantly better than that of the SITA group (p=0.043). Conclusion: BITA use in concomitant AVR and CABG showed no difference in mortality compared to using SITA. Although its impact on long-term survival was inconclusive, BITA use can be considered for low-risk patients.