• Title/Summary/Keyword: Internal stress model

Search Result 449, Processing Time 0.026 seconds

A Study on the Finite Element Analysis and Management Criteria by Applying UPRS Method in the Subway Station (기존 지하철정거장 비개착공법 적용시 유한요소 해석과 관리기준에 관한 연구)

  • Cho, Byeong Joon
    • Journal of Korean Society of Disaster and Security
    • /
    • v.12 no.4
    • /
    • pp.43-52
    • /
    • 2019
  • To analyze the influence on the stability, resulting from application of upgrade pipe roof structure (UPRS) method to the structure existed under subway Station, physical properties of a ground, elasticity and elasto-plastic theories, including displacement analysis of finite elements, stress analysis of finite elements, displacement caused by steel pipe propulsion and internal excavation, and stress change in a steel pipe, were introduced. Then, the influence on structural stability when applying the UPRS method was compared and reviewed based on the construction management standard of the Ministry Land, Infrastructure and Transport and foreign sources, using numerical analysis with a model which assumes that each microelement divided into a structurally stable point consists of the connection of finite points. As a result of the finite element analysis, 7.21 mm maximum displacement, 1/3,950 angular displacement, 70.28 MPa bending compressive stress of steel pipe structure constructed with UPRS (non-excavation) method and 477.38 MPa maximum shear strength were within their allowable standards (25.00 mm, 1/500, 210.00 MPa and 120.00 MPa, respectively), and therefore, the results showed that the design and construction are stable.

A Study on the Hydration Reaction Model of Expansive Additive of Ettringite-Gypsum Type (에트링가이트-석탄 복합계 팽장재의 수화반응 모델에 관한 연구)

  • Park Sun Gyu;Takahumi Noguchi;Kim Moo-Han
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.4 s.88
    • /
    • pp.581-586
    • /
    • 2005
  • High-performance concrete (HPC), which is particularly sensitive to self-desiccation, is required to be durable even in severe environmental conditions, i.e. costal area, cold district, etc. However, in recent years, some attention was particularly given to cracking sensitivity of high performance concrete at early age. It has been argued and demonstrated experimentally that such concrete undergoes autogenous shrinkage due to self-desiccation at early age under restrained condition, nd, as a result, internal tensile stress may develop, leading to micro cracking and macro cracking. This shrinkage-introduced crack produces a major serviceability problem for concrete structures. One possible method to reduce cracking due to autogenous shrinkage is the addition of expansive additive. Tests conducted by many researches have shown the beneficial effects of addition of expansive additive for reducing the risk of autogenous shrinkage-introduced cracking. However, the research on hydration model of expansion additive has been hardly researched up to now. This paper presents a study of the hydration model of Ettringite-Gypsum type expansive additive. As a result of comparing forecast values with experiment value, proposed model is shown to expressible of hydration of expansive additive.

Swelling behavior Simulation Study of KJ-II Bentonite Buffer Blocks under Various Experimental Conditions (다양한 실험조건에 따른 경주 벤토나이트 완충재 블록의 팽윤 거동 해석)

  • Lee, Deuk-Hwan;Go, Gyu-Hyun;Lee, Gi-Jun;Yoon, Seok
    • Journal of the Korean Geotechnical Society
    • /
    • v.40 no.2
    • /
    • pp.29-40
    • /
    • 2024
  • This study aimed to evaluate the swelling behavior characteristics of KJ-II buffer blocks by performing numerical analysis of swelling pressure measurement experiments using the nonlinear elasticity model of COMSOL Multiphysics. The analysis was conducted under boundary conditions that included isotropic constraints and water injection pressure, mirroring the experimental settings. Validation of the numerical model was achieved by comparing its outputs with experimental results. The validated model was then used to simulate swelling deformations under unconfined conditions and to analyze swelling pressure as influenced by dry density and the geometric shape of the buffer material. The results accurately represented the swelling deformation observed during the saturation process and demonstrated that swelling pressure increases with higher dry density. Moreover, simulations concerning the geometric shape of the buffer material indicated a markedly faster rate of pressure increase in U-shaped samples compared to cylindrical ones. Analysis suggested that stress manifested preemptively near the internal edges of U-shaped samples during saturation. To enhance the simulation's fidelity to actual buffer material behavior, further refinement of the analysis model using a nonlinear elasticity model is recommended.

Design Approach for Boundary Element of Flexure-Governed RC Slender Shear Walls Based on Displacement Ductility Ratio (휨 항복형 철근콘크리트 전단벽의 경계요소설계를 위한 변위연성비 모델제시)

  • Mun, Ju-Hyun;Yang, Keun-Hyeok
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.6
    • /
    • pp.687-694
    • /
    • 2014
  • This study established a displacement ductility ratio model for ductile design for the boundary element of shear walls. To determine the curvature distribution along the member length and displacement at the free end of the member, the distributions of strains and internal forces along the shear wall section depth were idealized based on the Bernoulli's principle, strain compatibility condition, and equilibrium condition of forces. The confinement effect at the boundary element, provided by transverse reinforcement, was calculated using the stress-strain relationship of confined concrete proposed by Razvi and Saatcioglu. The curvatures corresponding to the initial yielding moment and 80% of the ultimate state after the peak strength were then conversed into displacement values based on the concept of equivalent hinge length. The derived displacement ductility ratio model was simplified by the regression approach using the comprehensive analytical data obtained from the parametric study. The proposed model is in good agreement with test results, indicating that the mean and standard deviation of the ratios between predictions and experiments are 1.05 and 0.19, respectively. Overall, the proposed model is expected to be available for determining the transverse reinforcement ratio at the boundary element for a targeted displacement ductility ratio.

Scale Effects of Initial Model and Material on 3-Dimensional Distinct Element Simulation (3차원 개별요소해석 시의 초기 모델 및 재료 스케일 영향)

  • Jeon, Jesung;Shin, Donghoon;Ha, Iksoo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.7
    • /
    • pp.57-65
    • /
    • 2011
  • Numerical simulations by three-dimensional Particle Flow Code($PFC^{3D}$, Itasca) considering distinct element method (DEM) were carried out for prediction of triaxial compression test with sand material. The effect of scale conditions for numerical model and distinct material on final prediction results was analyzed by numerical models under various scale conditions, and following observations were made from the numerical experiments. It is very useful to model the initial material condition without any porosity conversion from 2-D to 3-D DEM. Numerical experiments have shown that in all cases considered, 3D distinct element modeling could provide good agreement on stress-strain behavior, volume change and strength properties with laboratory testing results. It was important thing to assess reasonable scale ratio of numerical model and distinct elements for saving calculation time and securing calculation efficiency under condition with accuracy and appropriateness as numerical laboratory. As results of DEM simulations under various scale conditions, most of results show that shear strength properties as cohesion and internal friction angle are similar in condition of $D_{mod}/D_{gmax}$ < 10. It shows that 3-D distinct element method could be used as efficient tool to assess strength properties by numerical laboratory technique.

Neural Network Model for Partial Discharge Pattern Analysis of XLPE/EPR Interface (XLPE/EPR 계면의 부분방전 패턴 분석을 위한 신경망 모형)

  • Cho, Kyung-Soon
    • Journal of the Korea Computer Industry Society
    • /
    • v.6 no.2
    • /
    • pp.357-364
    • /
    • 2005
  • The prefabricated type used generally in Korea to join cable runs on new installations or to repair broken Cable runs on existing installations, because installation is very simple and save time. This type is a permanent, shielded and submersible cable joint for direct burial or vault application. It confirms to the requirements of IEEE std. 404-1993 by factory testing, but many problems of insulated cable systems are caused by internal defects of the joint part which have to be mounted ensile. Faults arise from impurities or voids. A suitable solution for a monitoring of cable joints during the after-laying test and service is partial discharge detection. Specimen obtained 1mm thickness from the insulation of real power cable and cable joint. <중략>The partial discharges are measured to determine their time dependence for 60 minutes and the influence of applied electrical stress under 30kV. $\Phi-q-n$ properties were measured using detection impedance, high pass filter and computerized data acquisition system. Statistic Value like maximum charge, repetition rate, average charge, etc. are calculated. It is possible to quantitative analysis of $\Phi-q-n$ properties from this statistic value and pattern analysis.

  • PDF

Parametric Study of 2.5 kW Class Propeller Type Micro Hydraulic Turbine (2.5 kW 급 프로펠러형 마이크로 수차 매개변수 연구)

  • MA, SANG-BUM;KIM, SUNG;CHOI, YOUNG-SEOK;CHA, DONG-AN;KIM, JIN-HYUK
    • Journal of Hydrogen and New Energy
    • /
    • v.31 no.4
    • /
    • pp.387-394
    • /
    • 2020
  • A parametric study of a 2.5 kW class propeller type micro hydraulic turbine was performed. In order to analyze the internal flow characteristics in the hydraulic turbine, three dimensional Reynolds-averaged Navier-Stokes equations with shear stress transport turbulence model were used and the hexahedral grid system was used to construct computational domain. To secure the reliability of the numerical analysis, the grid dependency test was performed using the grid convergence index method based on the Richardson extrapolation, and the grid dependency was removed when about 1.7 million nodes were used. For the parametric study, the axial distance at shroud span (L) between the inlet guide vane and the runner, and the inlet and outlet blade angles (β1, β2) of the runner were selected as the geometric parameters. The inlet and outlet angles of the runner were defined in the 3 spans from the hub to tip, and a total of 7 geometric parameters were investigated. It was confirmed that the outlet angles of the runner had the most sensitive effect on the power and efficiency of the micro hydraulic turbine.

PIV Measurement of Unsteady Flow in Wavy-Walled Channels (기복을 갖는 채널 내부 비정상흐름의 PIV계측)

  • Cho Dae-Hwan;Han Won-Hui;Choi Sang-Bom
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2005.11a
    • /
    • pp.159-163
    • /
    • 2005
  • This experimental study was performed to investigate internal flow and unsteady flow characteristics using a model for actual shape of a plate heat exchanger and visualization of flow through the particle image velocimetry. Seven Reynolds numbers were selected by calculation with the height of grooved channel and sectional mean velocity of inlet flow in the experiment, and instantaneous velocity distributions and flow characteristics were experimently investigated. The triangular grooved channel had a compound flow consisting of the flow in lower channel and the groove flow receiving shear stress by the channel flow in the experiment. The sheared mixing layer, in the boundary between the triangular groove and the channel, affected main flow to raise turbulent in the channel.

  • PDF

The Antifibrotic and Antioxidant Activities of Hot Water Extract of Adventitious Root Culture of Panax ginseng (ARCP)

  • Lim, Hee-Kyoung;Kim, Youn-Woo;Lee, Dae-Ho;Cho, Somi-Kim;Cho, Moon-Jae
    • Journal of Applied Biological Chemistry
    • /
    • v.50 no.2
    • /
    • pp.78-84
    • /
    • 2007
  • The anti-fibrotic effects of hot water extract of adventitious root culture of Panax ginseng (ARCP) and the possible mechanisms were investigated on $CCl_4-induced$ hepatotoxicity model mice. Fibrosis was induced by a mild treatment of $CCl_4$. Then silymarin as a positive control drug and ARCP or carrier alone as a negative control were treated. Serum GPT, GOT and ALP activity levels were lowered by 25, 21 and 11% for silymarin treated group and by 48, 39 and 14% for ARCP treated group compared to carrier treated alone. Hepatic collagen for ARCP treatment group was reduced by 18% and MDA contents decreased a little more. Pro-fibrotic gene ($TGF-{\beta}1$, TIMP-1 and ${\alpha}-SMA$) expression increased following the $CCl_4$ treatment, but both the silymarin and the ARCP treatments decreased the expressions of these genes by 20% to 50%. The antioxidant effect of ARCP was studied by DPPH free radical scavenging activity. In addition, a generation of reactive oxygen species (ROS) was also reduced in $H_2O_2-treated$ HepG2 cells upon the ARCP treatment. In summary, ARCP has antioxidant property, and can have some protection against oxidative stress; more importantly, ARCP can efficiently protect mice against $CCl_4-induced$ fibrosis.

Development of MLS Difference Method for Material Nonlinear Problem (MLS차분법을 이용한 재료비선형 문제 해석)

  • Yoon, Young-Cheol
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.29 no.3
    • /
    • pp.237-244
    • /
    • 2016
  • This paper presents a nonlinear Moving Least Squares(MLS) difference method for material nonlinearity problem. The MLS difference method, which employs strong formulation involving the fast derivative approximation, discretizes governing partial differential equation based on a node model. However, the conventional MLS difference method cannot explicitly handle constitutive equation since it solves solid mechanics problems by using the Navier's equation that unifies unknowns into one variable, displacement. In this study, a double derivative approximation is devised to treat the constitutive equation of inelastic material in the framework of strong formulation; in fact, it manipulates the first order derivative approximation two times. The equilibrium equation described by the divergence of stress tensor is directly discretized and is linearized by the Newton method; as a result, an iterative procedure is developed to find convergent solution. Stresses and internal variables are calculated and updated by the return mapping algorithm. Effectiveness and stability of the iterative procedure is improved by using algorithmic tangent modulus. The consistency of the double derivative approximation was shown by the reproducing property test. Also, accuracy and stability of the procedure were verified by analyzing inelastic beam under incremental tensile loading.