• Title/Summary/Keyword: Internal strain

Search Result 804, Processing Time 0.025 seconds

Measurement of Residual and Internal Strain of 3-D Braided Hybrid Composite using Embedded FBG Sensor (FBG 센서를 삽입한 3차원 브레이드 하이브리드 복합재료의 잔류변형률 및 내부변형률 측정)

  • Jung, Kyung-Ho;Kim, Don-Gun;Kang, Tae-Jin
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.04a
    • /
    • pp.21-24
    • /
    • 2005
  • Three dimensional circular braided Glass/Aramid hybrid fabric/epoxy resin composite was fabricated. FBG sensor was embedded along the braid yam in order to monitor the internal dimensional changes of the 3-D braid composite. The amount of cure and thermal shrinkage of epoxy resin was also determined using FBG sensor system. FBG sensors with different grating length were embedded and their response were compared. The thermo-optic coefficient of FBG sensor was measured by several preliminary experiments. The internal strain that measured by FBG sensor and electric strain gauge was compared during compressive test. The released residual strain of the fabricated tubular composite was estimated using cutting method. The internal strain of the composite was estimated using FBG sensor system, and the result was compared with the value from electric strain gauge. It was found that FBG sensor system is a very useful technique to investigate inside region of complicated structure.

  • PDF

VISUALIZATION OF INTERNAL DEFECTS IN PLATE-TYPE NUCLEAR FUEL BY USING NONCONTACT OPTICAL INTERFEROMETRY

  • Park, Seung-Kyu;Park, Nak-Gyu;Baik, Sung-Hoon;Kang, Young-June
    • Nuclear Engineering and Technology
    • /
    • v.45 no.3
    • /
    • pp.361-366
    • /
    • 2013
  • An imaging technique to visualize the internal defects in a plate-type nuclear fuel specimen was developed by using an active optical interferometer for a nondestructive quality inspection. A periodic thermal wave having a sinusoidal intensity pattern induced a periodical strain variation for the specimen. The varying strain image was acquired using an optical laser interferometer. The strain distribution over the internal defects will be distorted in an acquired strain image because a part of the thermal wave will be reflected from these defects during propagation. In this paper, internal defects were efficiently visualized by sequentially accumulating the extracted defect components. The experimental results confirmed that the developed visualization system can be a valuable tool to detect the internal defects in plate-type nuclear fuel.

Damage Behavior of Elbow Pipe with Inner or Outer Local Wall Thinning under Internal Pressure (내압을 받는 내/외부 국부 감육 곡관의 파손거동)

  • Kim, Soo-Young;Nam, Ki-Woo
    • Journal of Power System Engineering
    • /
    • v.18 no.5
    • /
    • pp.66-73
    • /
    • 2014
  • This study was considered to occur the local wall thinning at elbow which is flowing the steam and high-pressure water of high-temperature. The angle of elbow is ${\Theta}=45^{\circ}$ and $67.545^{\circ}$. The damage behaviors of inner or outer wall thinning elbow under internal pressure were calculated by FEA(finite element analysis). We compared the simulated results by FEA with experimental data. The FEA results are as follows: In the FEA results of three types of wall thinning ratio, the circumferential and longitudinal stresses show the similar values regardless of the angle of elbow, respectively. The circumferential strain was greater at elbow of small angle, but the longitudinal strain was nearly same. The FEM stress of outer wall thinning elbow was slightly higher than that of the inner wall thinning elbow, and strain was also slightly higher. In the experiments, the circumferential strain was increased with the increase in the internal pressure, and increased rapidly on about 0.2% of strain. The longitudinal strain was small. The strain at break was much smaller than 0.2%. In the relation between pressure and eroded ratio, the criteria that can be used safely under operating pressure and design pressure were obtained. The results of FEA were in relatively good agreement with those of the experiment.

The Study on the Simple Measurement by Using the Strain Gauge at Dam Dynamic Behavior Analysis (댐 거동 분석에서의 Strain Gauge를 이용한 단일 계측에 관한 연구)

  • Lee, Seungho
    • Journal of the Korean GEO-environmental Society
    • /
    • v.8 no.1
    • /
    • pp.5-11
    • /
    • 2007
  • Internal stress variation in the face slab concrete induced by reservoir water pressure may affect on the stability of the dam so that the reclamation type of strain gauge is applied for measuring internal stress variation. In this study, internal as well as external stress variation of dam was measured by using strain gauge that was reclaimed to the ${\circ}{\circ}$ dam. In the result, it was confirmed that other measurements by relevant gauges need to be supplemented as the use of strain gauge only is insufficient to evaluate the stability analysis and global behavior of the dam.

  • PDF

Three-Dimensional Myocardial Strain for the Prediction of Clinical Events in Patients With ST-Segment Elevation Myocardial Infarction

  • Wonsuk Choi;Chi-Hoon Kim;In-Chang Hwang;Chang-Hwan Yoon;Hong-Mi Choi;Yeonyee E Yoon;In-Ho Chae;Goo-Yeong Cho
    • Journal of Cardiovascular Imaging
    • /
    • v.30 no.3
    • /
    • pp.185-196
    • /
    • 2022
  • BACKGROUND: Two-dimensional (2D) strain provides more predictive power than ejection fraction (EF) in patients with ST-elevation myocardial infarction (STEMI). 3D strain and EF are also expected to have better clinical usefulness and overcome several inherent limitations of 2D strain. We aimed to clarify the prognostic significance of 3D strain analysis in patients with STEMI. METHODS: Patients who underwent successful revascularization for STEMI were retrospectively recruited. In addition to conventional parameters, 3D EF, global longitudinal strain (GLS), global area strain (GAS), as well as 2D GLS were obtained. We constructed a composite outcome consisting of all-cause death or re-hospitalization for acute heart failure or ventricular arrhythmia. RESULTS: Of 632 STEMI patients, 545 patients (86.2%) had a reliable 3D strain analysis. During median follow-up of 49.5 months, 55 (10.1%) patients experienced the adverse outcome. Left ventricle EF, 2D GLS, 3D EF, 3D GLS, and 3D GAS were significantly associated with poor outcomes. (all, p < 0.001) The maximum likelihood-ratio test was performed to evaluate the additional prognostic value of 2D GLS or 3D GLS over the prognostic model consisting of clinical characteristics and EF, and the likelihood ratio was 15.9 for 2D GLS (p < 0.001) and 1.49 for 3D GLS (p = 0.22). CONCLUSIONS: The predictive power of 3D strain was slightly lower than the 2D strain. Although we can obtain 3D strains, volume, and EF simultaneously in same cycle, the clinical implications of 3D strains in STEMI need to be investigated further.

Comparative study on stress distribution around internal tapered connection implants according to fit of cement- and screw-retained prostheses

  • Lee, Mi-Young;Heo, Seong-Joo;Park, Eun-Jin;Park, Ji-Man
    • The Journal of Advanced Prosthodontics
    • /
    • v.5 no.3
    • /
    • pp.312-318
    • /
    • 2013
  • PURPOSE. The aim of this study was to compare the passivity of implant superstructures by assessing the strain development around the internal tapered connection implants with strain gauges. MATERIALS AND METHODS. A polyurethane resin block in which two implants were embedded served as a measurement model. Two groups of implant restorations utilized cement-retained design and internal surface of the first group was adjusted until premature contact between the restoration and the abutment completely disappeared. In the second group, only nodules detectable to the naked eye were removed. The third group employed screw-retained design and specimens were generated by computer-aided design/computer-aided manufacturing system (n=10). Four strain gauges were fixed on the measurement model mesially and distally to the implants. The strains developed in each strain gauge were recorded during fixation of specimens. To compare the difference among groups, repeated measures 2-factor analysis was performed at a level of significance of ${\alpha}$=.05. RESULTS. The absolute strain values were measured to analyze the magnitude of strain. The mean absolute strain value ranged from 29.53 to 412.94 ${\mu}m/m$ at the different strain gauge locations. According to the result of overall comparison, the cement-retained prosthesis groups exhibited significant difference. No significant difference was detected between milled screw-retained prostheses group and cement-retained prosthesis groups. CONCLUSION. Within the limitations of the study, it was concluded that the cement-retained designs do not always exhibit lower levels of stress than screw-retained designs. The internal adjustment of a cement-retained implant restoration is essential to achieve passive fit.

Effect of Ceramic-Electrode Interface on the Electrical Properties of Multilayer Ceramic Actuators (적층형 세라믹 액츄에이터의 세라믹-전극간 계면이 전기적 특성에 미치는 영향에 대한 연구)

  • 하문수;정순종;송재성;이재신
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.10
    • /
    • pp.896-901
    • /
    • 2002
  • The polarization and strain behavior of multilayer ceramic actuators fabricated by tape casting using a PNN-PZT ceramics were investigated in association with electrode size and internal layer number. Spontaneous polarization and strain decreased with increasing electrode size. In addition, the increase of internal layer number brought reduced spontaneous polarization and increased the field-induced strain. Because the actuators structure is designed to stack ceramic layer and electrode layer alternatively, the ceramic-electrode interfaces may act as a resistance to motion of domain wall. To analyze the effect of ceramic-electrode interface, the diffraction intensity ratio of (002) to (200) planes was calculated from X-ray diffraction patterns of samples subjected to a voltage of 200 V. The diffraction intensity ratio of (002) to (200) planes was decreased with increasing electrode size and internal layer number. The diffraction intensity ratio and straining behavior analyses indicate that the Polarization and strain were affected by the amount of 90°domain decreasing with increasing electrode size and internal layer number. Consequently, the change of polarization and displacement with respect to electrode size and layer number is likely to be caused by readiness of the domain wall movement around the interface.

The measurement of the internal strain of a concrete specimen using optical fiber interferometric sensors (광섬유 간섭계 센서를 이용한 콘크리트 구조물의 내부 스트레인 측정)

  • Lee, Kyung-Jin;Park, Jae-Hee;Kang, Shin-Won
    • Journal of Sensor Science and Technology
    • /
    • v.10 no.6
    • /
    • pp.304-309
    • /
    • 2001
  • A Fiber optic strain sensor for the measurement of the internal strain of a concrete specimen was developed. This sensor was a 11 mm Fiber-optic Fabry-Perot interferometer attached inside a stainless steel pipe of 2 mm diameter. The fabricated strain sensors were embedded in a reinforced concrete structure of $100{\times}100{\times}500\;mm^3$ size and were measured the internal strain of a concrete structure when the external pressure was applied to the structure. For a field application, the strain sensors were attached on the bottom of a real bridge and dynamic loading test were executed. In the test, they showed good sensitivity as a deformation sensor and capability of remote monitoring.

  • PDF

Splinted and non-splinted implant-supported restorations : prosthetic considerations for restoring multiple adjacent teeth (Splinted or Non-splinted: 다수의 인접한 치아 결손부 수복을 위한 임플란트 보철)

  • Yoon, Hyung-In
    • The Journal of the Korean dental association
    • /
    • v.54 no.3
    • /
    • pp.198-205
    • /
    • 2016
  • The purpose of this paper was to investigate the significance of splinted and non-splinted implant-supported restorations with an internal connection for multiple consecutively missing teeth. Upon examination of the effects of fixture-abutment connection, the distribution of occlusal load was favorable in splinted implant-prosthesis with an external connection, but effect of strain distribution was not significant in splinted implant-prosthesis with an internal connection. In splinted implant-prostheses for short implants, strain distribution was not affected by the method of retention. For cement-retained prostheses, the effect of strain distribution due to splinting was not significant. In clinical studies, non-splinted prostheses with an internal connection for multiple consecutively missing teeth showed high survival rate, mild marginal bone loss, and stable periodontal condition. However, failure to achieve optimal proximal contact between single-unit prostheses may lead to food impaction, and veneer fracture may be inevitable when the framework provides inadequate support in the proximal region. In conclusion, splinted implant-prosthesis is not an indication in all cases, and clinical consideration of its use should be based on the patient's oral condition, such as location and number of implants, formation of proximal contact, canine guidance, existence of parafunctional habit, and oral hygiene, when multiple consecutively missing teeth are replaced by internal connection type implant.

  • PDF

Investigation of the effect of internal curing as a novel method for improvement of post-fire properties of high-performance concrete

  • Moein Mousavi;Habib Akbarzadeh Bengar
    • Computers and Concrete
    • /
    • v.33 no.3
    • /
    • pp.309-324
    • /
    • 2024
  • Internal curing, a widely used method for mitigating early-age shrinkage in concrete, also offers notable advantages for concrete durability. This paper explores the potential of internal curing by partial replacement of sand with fine lightweight aggregate for enhancing the behavior of high-performance concrete at elevated temperatures. Such a technique may prove economical and safe for the construction of skyscrapers, where explosive spalling of high-performance concrete in fire is a potential hazard. To reach this aim, the physico-mechanical features of internally cured high-strength concrete specimens, including mass loss, compressive strength, strain at peak stress, modulus of elasticity, stress-strain curve, toughness, and flexural strength, were investigated under different temperature exposures; and to predict some of these mechanical properties, a number of equations were proposed. Based on the experimental results, an advanced stress-strain model was proposed for internally cured high-performance concrete at different temperature levels, the results of which agreed well with the test data. It was observed that the replacement of 10% of sand with pre-wetted fine lightweight expanded clay aggregate (LECA) not only did not reduce the compressive strength at ambient temperature, but also prevented explosive spalling and could retain 20% of its ambient compressive strength after heating up to 800℃. It was then concluded that internal curing is an excellent method to enhance the performance of high-strength concrete at elevated temperatures.