• 제목/요약/키워드: Internal recycle rate

검색결과 28건 처리시간 0.033초

부착증식공정에서 내부 반송율 변화에 따른 생물학적 제거 특성 (Biological Removal Characteristics by the Internal Recycle Rate in the Attached Growth Process)

  • 박충기;김병욱;임재명
    • 환경위생공학
    • /
    • 제14권4호
    • /
    • pp.110-116
    • /
    • 1999
  • This study was conducted to investigate the contaminants removal efficiency and the optimal operating parameters by the internal recycle rate (IRR) in the combining A2/O process with fixed film. The average removal efficiency of BOD and COD was 92.5%~94.6%, 73.9%~87.0% in RUN 1 and 91.9%~94.7%, 77.7%~89.0% in RUN 2, respectively. Organic removal efficiency, at two different hydraulic retention time of 10 and 14hr, was similar. At 50% of the internal recycle rate, organic removal efficiency was somewhat higher than the other. Total nitrogen (T-N) and total phosphorus (T-P) were removed, highly, at 50% of internal recycle rate. It could be suggested by this study that the optimum internal recycle rate is 50% and hydraulic retention time is 14hr.

  • PDF

섬모상담체를 이용한 고도처리공정의 운전인자 도출 (Proposed Operating Parameters for Advanced Treatment Process using a Cilium Media BNR Process)

  • 안윤희;박찬규;고광백;이강수
    • 한국물환경학회지
    • /
    • 제23권5호
    • /
    • pp.761-765
    • /
    • 2007
  • The study were conducted in order to investigate the effect of operating parameters including the internal recycle (nitrification return) rates, hydraulic retention times (HRTs) and temperature when using a cilium media method. The first experiment was for evaluating the effect of HRT (12 hr, 10 hr, 8 hr, 6 hr, 4 hr). The second experiment was for analyzing effect of internal recycle rate (100%, 200%, 300%, 400%). As a result of the first experiment, BOD was removed to 97~98% for 6~8 hr HRT. Effluent water quality was not significantly influenced with HRT within that range. However the nitrogen removal was sensitive to HRT. T-P removal efficiency was invariable at various HRTs. The average BOD removal efficiency was about 97% in spite of change of internal recycle rate while T-N removal efficiency was increased at the internal recycle rate of 100~200%, but invariable at the internal recycle rate of 200~300%.

MBR공정에서 내부 반송비에 따른 생물대사성분의 거동 (Behavior of Soluble Microbial Products by the Internal Recycle Rate in MBR Process)

  • 이원배;차기철;정태영;김동진;유익근
    • 한국물환경학회지
    • /
    • 제21권6호
    • /
    • pp.602-608
    • /
    • 2005
  • A laboratory-scale experiment was conducted to investigate control of soluble microbial products (SMP) by the internal recycle rate in the submerged membrane separation activated sludge process. The internal recycle rate of the reactor RUN 1 and RUN 2 were 100 % and 200 %, respectively. SMP concentration was rapidly accumulated in the reactor (RUN 1). The variation of accumulated SMP concentration was related to the denitrification rate at the beginning experiment however SMP concentration decreased without correlatively to the denitrification rate during long operation time. The microbial kinetic model was rapidly presented in the both microbial growth and extinction in the reactor (RUN 1). In the SMP kinetic model, Internal recycle rate is the lower, value of UAP and BAP which SMP matter were presented low. The study about development of kinetic model is relatively well adjusted to the experiment exception SMP. In the future, SMP formation equation must be thought that continually research is necessary.

무산소조에서 고농도 미생물을 이용한 하수고도처리공정의 처리특성 (Characteristics of Advanced Wastewater Treatment Process Using High MLSS in Anoxic Tank)

  • 손동훈;임봉수;박혜숙
    • 한국물환경학회지
    • /
    • 제20권1호
    • /
    • pp.42-47
    • /
    • 2004
  • This study was accomplished to develope an advanced wastewater treatment process using high MLSS in anoxic tank aimed to improve nutrient removal and to reduce wasting sludge. It was operated with 4 Modes with varing solid concentration and internal recycle ratios. Mode I, II, III was operated 1.0~1.5% MLSS concentration at anoxic tank with 50% sludge recycle rate, however, each internal recycle rate were 100%, 200%, 300% and Mode IV was operated 1.5~2.0% MLSS concentration at anoxic tank with 50% sludge recycle rate and 100% internal recycle rate. The COD removal efficiency didn't show any big difference from Mode I to IV. The average COD removal rate was over than 90%. The T-N removal rate was 73%, the highest rate in all mode. The 36% of SCOD is used for the denitrification and phosphorus release in the anoxic tank. Specific denitrification rate was 3.5mg $NO_3{^-}-N/g$ Mv/hr and denitrification time was 0.7hr. As MLSS concentration is higher in anoxic tank as denitrification time would be shorter. The T-P removal rate was average 70%. The phosphorus release accomplished from the anoxic tank because the anaerobic condition was prevalent in the anoxic due to the prompt completion of denitrification. Sludge production was 0.28 kgVSS/kg $BOD_{removed}$ under the 1.5% MLSS and 17 day SRT. It is prominent result which has 40% sludge reduce comparing with traditional activate sludge system.

다단층 부착성장 공법($A^2/O$향)에서 순환비에 따른 질소제거 (Nitrogen Removal in the Multi-stage Bed Attached Growth Process of $A^2/O$ System with Interanal Recycle Ratio)

  • 최규철;윤용수;정일현
    • 환경위생공학
    • /
    • 제12권3호
    • /
    • pp.95-102
    • /
    • 1997
  • The process which can stabilize water quality of treatment and improve nitrogen removal rate under the condition of high organic loading was developed by charging fibrous HBC media to single sludge nitrification-denitrification process. This process was operated easier, minimized the treatment cost, and shortened the retention time. To improve T-N removal rate, a part of nitrifing liquid at aerobic zone was recycled to anoxic zone by approximate internal recycle ratio. The experimental results are as follows ; T-N removal efficiency in the organic volumetric loading 0.14-0.19 kg/COD/m$^{3}$·d was obtained asmaxium of 85% at internal recycle ratio 2.5 and in more ratio than this it was decreased. Organic removal efficiency was about 91% under the overall experimental conditions and not influenced by recycle ratio.

  • PDF

파이롯트 규모의 BNR 공법에 의한 도시하수의 질소 및 인 제거 (Removal of Nitrogen and Phosphorus from Municipal Wastewater by a Pilot-scale BNR Process)

  • 김영철
    • 상하수도학회지
    • /
    • 제21권5호
    • /
    • pp.589-599
    • /
    • 2007
  • This study was conducted to investigated the removal efficiency of BOD and nutrient for the treatment of low strength municipal wastewater by a biological nutrient removal system. In this experiment, the effect of operating parameter including HRT of 7.0hr, BOD/TN ratios of 2.62~4.08, internal recycle of 50~300%, and return sludge of 50~100%, were studied during winter season. Efficiencies of organic matter and T-P removal and denitrification were not significantly affected by the change of temperature in winter season. However, the specific nitrification rate and nitrification efficiency decreased at low temperature. Besides, denitrification efficiencies increased with increasing BOD/TN ratios. It was also found that the internal recycle and return sludge ratio below 50% is required for the effective denitrification of low strength municipal wastewater. With operating mode 4 of the optimum, the effluent BOD, T-N and T-P concentration were obtained to average 5.8, 14.6, and 0.84 mg/L, respectively. The temperature-activity coefficient (${\theta}$) of specific nitrification rate, specific denitrification rate and specific phosphorus uptake rate were obtained 1.044, 1.017, 1.028, respectively.

2단형 막분리 활성슬러지법(Two Stage MBR)에서 내부순환율 변화와 응집제 첨가에 의한 질소 및 인제거 특성에 관한 연구 (Nitrogen and Phosphorus Removal Characteristics from Domestic Sewage using Two Stage Membrane Bioreactor)

  • 박재로;임현만;김응호
    • 한국물환경학회지
    • /
    • 제18권2호
    • /
    • pp.131-140
    • /
    • 2002
  • Laboratory-scale membrane bioreactor added alum into the anaerobic basin as a flocculant and adsorbent was carried out to find removal efficient of nitrogen and phosphorus components in the mixed liquid and weather or not maintaining the stability for the permeate flux and pressure at various internal recycle conditions. It was found that denitrification efficient of maximum 65% was obtained when the ratio of internal recycle was 3Q. Additionally when the ratio of internal recycle was fixed at 3Q, $BOD_5$ and T-P concentration of permeate was much more reduced compared to not added alum in anaerobic basin but T-N concentration of permeate was relatively increased. In case of added alum as the flocculant and adsorbent in anaerobic basin, the permeate flux was maintained above $10{\ell}/m^2/hr$ but the permeate pressure was relatively higher than alum was not added in anaerobic basin.

$A_2O$공정에서의 섬모상 담체 사용 유무에 따른 하수의 질소 . 인 제거에 관한 연구 (A Study on the Removal of Nitrogen and Phosphorus Depending on Existence of Cilia Media in Sewage in Anaerobic-Anoxic-Oxic Process)

  • 박태진;이정민;송경석;조일형;김영규;정문호
    • 한국환경보건학회지
    • /
    • 제26권3호
    • /
    • pp.69-75
    • /
    • 2000
  • This study was carried out to investigate the removal of nitrogen and phosphorus in municipal sewage according to the variation of volumetric ratio in the reactor. It also was performed to provide basic data necessary to the development and improvement of the process which is Anaerobic-Anoxic-Oxic(A2O). In the removal of BOD and COD, the best efficiency of the process showed in the condition of using the media, 1Q of internal recycle rate and 1:3:2 of the volumetric ratio in Anaerobic-Anoxic-Oxic process. In most cases, nitrogen and phosphorus removal efficiency of the process using the cilia media was superior to that of the process which didn't use the media. In the removal of T-N and T-P, the best efficiency of the process showed in the condition of using the media, 1Q of internal recycle rate and 1:3:2 of the volumetric ratio in Anaerobic-Anoxic-Oxic process.

  • PDF

축산폐수 처리 시 화학적 전처리가 연계처리에 미치는 영향 연구 (A Study on the Effect of Chemical Pretreatment for Livestock Wastewater on the Linked Treatment of Sewage)

  • 한준석;한기봉
    • 유기물자원화
    • /
    • 제18권1호
    • /
    • pp.89-97
    • /
    • 2010
  • 본 연구에서는 오존을 이용하여 축산폐수를 전처리하고 일반하수와 연계하여 처리하였을 때 처리효율을 실험실 규모의 장치를 이용하여 비교 분석하였으며 결과는 다음과 같다. 축산폐수의 오존산화 결과 대상폐수의 pH를 산성(pH4), 중성(pH7), 알칼리성(pH10)으로 변화시켰을 때 각각 COD제거율은 시간당 17%, 78%, 62% 로 분석되었다. 오존산화에 의해 NBDCOD 중 일부가 미생물이 분해가능한 BDCOD 로 전환되어 SCODcr/TCODcr 비는 26%에서 약 38%로 증가하였다. 따라서, 오존산화에 의한 축산폐수의 전처리는 난분해성 물질을 생물학적 분해 가능한 물질로 일부 전환시키며 후단 생물학적 처리 단계에서의 제거효율을 높일 수 있는 영향을 미치는 것으로 분석되었다. 오존산화처리된 축산폐수와 하수와의 연계유입수를 MLE(Modified Ludzack-Ettinger) 공정으로 처리한 결과, 내부반송 100%일 때 TCODcr 93.8%, T-N 74.3%, T-P 89.7%, SS 97.5%의 처리효율을 나타냈다. 또한 내부반송율을 150%로 증가시켰을 때 처리효율은 각각 94.5%, 54.5%, 70.8%, 98.5% 로 나타났고, 200%로 증가시켰을 때 처리효율은 각각 92.6%, 83.1%, 81.9%, 98.5% 로 나타났다. 연계유입수를 원수로 사용한 경우 특히 질소제거율은 내부반송율 100%, 150%, 200%에서 각각 74.3%, 54.5%, 83.1%로 나타났으며, 모든 경우에 있어 일반하수를 원수로 사용한 경우보다 질소제거율이 우수한 것으로 분석되었다.

분리막이 결합된 무산소·호기 공정을 이용한 축산폐수처리에서 수리학적체류시간 및 내부반송율이 유기물 및 질소제거에 미치는 영향 (Effect of HRT and Internal Recycle Ratio on Removal of Organic and Nitrogen in Swine Wastewater by Anoxic-Oxic Process Combined with Membrane)

  • 황규대;이봉희;이현덕
    • 한국물환경학회지
    • /
    • 제20권6호
    • /
    • pp.603-609
    • /
    • 2004
  • The objective of this study was to determine the optimal operation conditions in an anoxic oxic process to eliminate both organic and nitrogen matters in swine wastewater. For the purpose of this, the removal efficiency was evaluated with various HRTs and internal recycling ratio. During the whole 580 days of experiment, HRTs had been gradually decreased in an order of 20, 14, 12 and l0days, and the internal recycle ratio was kept at 20Q. So as to determine the effect of the internal recycle ratio on the nitrogen removal, the internal recycle ratio had been gradually increased from 20Q to 50Q while HRT was maintained at 12days. As a result, it was shown that the removal efficiency of organic matter was above 95% regardless of changing of HRTs. The average influent concentration of TCODcr and SCODcr were 24,854 mg/L and 18,920 mg/L, respectively. Average removal efficiency of TKN was shown to be nearly 98% when HRT was kept at 12days; however, the $NH_4{^+}-N$ concentration of effluent was shown to be increased when the loading rate of $NH_4{^+}-N$ was increased to $0.602 kgNH_4{^+}-N/m^3$-day by means of decreasing HRT to 10days. It was concluded that nitrogen loading rates should be more considered rather than organic loading rates in case of determining an optimal HRT. When gradually increasing the internal recycle ratio from 20Q to 50Q, the removal efficiency of organic matters and TKN were 96% and 98%, respectively so that no significant changes in removal efficiency was detected. However, when the internal recycle ratio was kept at 50Q, it was revealed that the $NO_3-N$ concentration of effluent seemed to drop and the average $NO_3-N$ concentration of effluent was around 52 mg/L.