• 제목/요약/키워드: Internal radial displacement

검색결과 23건 처리시간 0.019초

샌드 드레인으로 개량된 점토지반의 내부거동에 대한 압밀변형 메커니즘 (Mechanism of Consolidation Displacement on Internal Behavior of Clay Ground Improved by Sand Drain)

  • 백원진
    • 한국농공학회논문집
    • /
    • 제48권6호
    • /
    • pp.69-77
    • /
    • 2006
  • In this study, the large scaled model test improved by sand drain was carried out to clarify the internal behavior of the three-dimensional consolidation under different secondary consolidation periods. From the results of model test, the void ratio in the undrained side was lager than in the drained side. In addition, the unconfined compressive strength in the long-term consolidated specimen was larger than that in the short-term consolidated one. It was also found that the unconfined compressive strength was larger in the drained side than in the undrained side. These reasons are considered to be due to the large effective stress by quick pore water pressure dissipation by the short drainage distance in the drained side. Furthermore, in order to investigate the three-dimensional consolidation behavior of clay ground improved by the vertical drain method, the numerical analysis obtained from the three-dimensional elasto-viscous consolidation theory proposed by author (2006) were compared with the test results. It was found that during the three-dimensional consolidation process not only vertical displacement but also radial displacement occurs inside the specimen.

Application of shear deformation theory for two dimensional electro-elastic analysis of a FGP cylinder

  • Arefi, M.;Rahimi, G.H.
    • Smart Structures and Systems
    • /
    • 제13권1호
    • /
    • pp.1-24
    • /
    • 2014
  • The present study deals with two dimensional electro-elastic analysis of a functionally graded piezoelectric (FGP) cylinder under internal pressure. Energy method and first order shear deformation theory (FSDT) are employed for this purpose. All mechanical and electrical properties except Poisson ratio are considered as a power function along the radial direction. The cylinder is subjected to uniform internal pressure. By supposing two dimensional displacement and electric potential fields along the radial and axial direction, the governing differential equations can be derived in terms of unknown electrical and mechanical functions. Homogeneous solution can be obtained by imposing the appropriate mechanical and electrical boundary conditions. This proposed solution has capability to solve the cylinder structure with arbitrary boundary conditions. The previous solutions have been proposed for the problem with simple boundary conditions (simply supported cylinder) by using the routine functions such as trigonometric functions. The axial distribution of the axial displacement, radial displacement and electric potential of the cylinder can be presented as the important results of this paper for various non homogeneous indexes. This paper evaluates the effect of a local support on the distribution of mechanical and electrical components. This investigation indicates that a support has important influence on the distribution of mechanical and electrical components rather than a cylinder with ignoring the effect of the supports. Obtained results using present method at regions that are adequate far from two ends of the cylinder can be compared with previous results (plane elasticity and one dimensional first order shear deformation theories).

승용차용 레이디얼 타이어의 동적 특성에 관한 연구 (A Study of the Dynamic Characteristics of a Passenger Radial Tire)

  • 김두만;김상욱
    • 대한기계학회논문집
    • /
    • 제10권5호
    • /
    • pp.724-734
    • /
    • 1986
  • 본 연구에서는 타이어의 동적설계의 기초자료를 제시하는데 그 목적이 있다. 해석적 방법으로는 복합막트로이드 유한요소를 이용하여 타이어의 고유진동수 및 진동 모우드를 구하였으며, 그 정확성을 입증하기 위하여 멀디찬널 F.F.T.분소기를 이용한 실험적 결과 및 G.R. Potts의 해석결과와 비교하였다.

Dynamic analysis of 3-D structures with adaptivity in RBF of dual reciprocity BEM

  • Razaee, S.H.;Noorzad, A.
    • Structural Engineering and Mechanics
    • /
    • 제29권2호
    • /
    • pp.117-134
    • /
    • 2008
  • A new adaptive dual reciprocity boundary element method for dynamic analysis of 3-D structures is presented in this paper. It is based on finding the best approximation function of a radial basis function (RBF) group $f=r^n+c$ which minimize the error of displacement field expansion. Also, the effects of some parameters such as the existence of internal points, number of RBF functions and position of collocation nodes in discontinuous elements are investigated in this adaptive procedure. Three numerical examples show improvement in dynamic response of structures with adaptive RBF in dual reciprocity with respect to ordinary BEM.

탄성지반상에 놓인 철근 콘크리트 축대칭 쉘의 정적 및 동적 해석(IV) -축대칭 쉘의 동적 응답에 대한 철근의 영향을 중심으로- (Static and Dynamic Analysis of Reinforced Concrete Axisymmetric Shell on the Elastic Foundation -Effect of Steel on the Dynamic Response-)

  • 조진구
    • 한국농공학회지
    • /
    • 제39권4호
    • /
    • pp.106-113
    • /
    • 1997
  • Dynamic loading of structures often causes excursions of stresses well into the inelastic range, and the influence of the geometric changes on the dynamic response is also significant in many cases. Therefore, both material and geometric nonlinearity effects should be considered in case that a dynamic load acts on the structure. A structure in a nuclear power plant is a structure of importance which puts emphasis on safety. A nuclear container is a pressure vessel subject to internal pressure and this structure is constructed by a reinforced concrete or a pre-stressed concrete. In this study, the material nonlinearity effect on the dynamic response is formulated by the elasto-viscoplastic model highly corresponding to the real behavior of the material. Also, the geometrically nonlinear behavior is taken into account using a total Lagrangian coordinate system, and the equilibrium equation of motion is numerically solved by a central difference scheme. The constitutive relation of concrete is modeled according to a Drucker-Prager yield criterion in compression. The reinforcing bars are modeled by a smeared layer at the location of reinforcements, and the steel layer model under Von Mises yield criteria is adopted to represent an elastic-plastic behavior. To investigate the dynamic response of a nuclear reinforced concrete containment structure, the steel-ratios of 0, 3, 5 and 10 percent, are considered. The results obtained from the analysis of an example were summarized as follows 1. As the steel-ratio increases, the amplitude and the period of the vertical displacements in apex of dome decreased. The Dynamic Magnification Factor(DMF) was some larger than that of the structure without steel. However, the regular trend was not found in the values of DMF. 2. The dynamic response of the vertical displacement and the radial displacement in the dome-wall junction were shown that the period of displacement in initial step decreased with the steel-ratio increases. Especially, the effect of the steel on the dynamic response of radial displacement disapeared almost. The values of DMF were 1.94, 2.5, 2.62 and 2.66, and the values increased with the steel-ratio. 3. The characteristics of the dynamic response of radial displacement in the mid-wall were similar to that of dome-wall junction. The values of DMF were 1.91, 2.11, 2.13 and 2.18, and the values increased with the steel-ratio. 4. The amplitude and the period of the hoop-stresses in the dome, the dome-wall junction, and the mid-wall were shown the decreased trend with the steel-ratio. The values of DMF were some larger than those of the structure without steel. However, the regular trend was not found in the values of DMF.

  • PDF

A simple prediction procedure of strain-softening surrounding rock for a circular opening

  • Wang, Feng;Zou, Jin-Feng
    • Geomechanics and Engineering
    • /
    • 제16권6호
    • /
    • pp.619-626
    • /
    • 2018
  • A simple prediction procedure was investigated for calculating the stresses and displacements of a circular opening. Unlike existed approaches, the proposed approach starts each step with a radius increment. The stress for each annulus could be obtained analytically, while strain increments for each step can be determinate numerically from the compatility equation by finite difference approximation, flow rule and Hooke's law. In the successive manner, the distributions of stresses and displacements could be found. It should be noted that the finial radial stress and displacement were equal to the internal supporting pressure and deformation at the tunnel wall, respectively. By assuming different plastic radii, GRC and the evolution curve of plastic radii and internal supporting pressures could be obtained conveniently. Then the real plastic radius can be calculated by using linear interpolation in the evolution curve. Some numerical and engineering examples were performed to demonstrate the accuracy and validity for the proposed procedure. The comparisons results show that the proposed procedure was faster than that in Lee and Pietrucszczak (2008). The influence of annulus number and dilation on the accuracy of solutions was also investigated. Results show that the larger the annulus number was, the more accurate the solutions were. Solutions in Park et al. (2008) were significantly influenced by dilation.

중간 지지된 유체 유동 외팔형 원통셸의 임계유속 (Critical Fluid Velocity of Fluid-conveying Cantilevered Cylindrical Shells with Intermediate Support)

  • 김영완
    • 한국소음진동공학회논문집
    • /
    • 제21권5호
    • /
    • pp.422-429
    • /
    • 2011
  • The critical fluid velocity of cantilevered cylindrical shells subjected to internal fluid flow is investigated in this study. The fluid-structure interaction is considered in the analysis. The cantilevered cylindrical shell is supported intermediately at an arbitrary axial position. The intermediate support is simulated by two types of artificial springs: translational and rotational spring. It is assumed that the artificial springs are placed continuously and uniformly on the middle surface of an intermediate support along the circumferential direction. The steady flow of fluid is described by the classical potential flow theory. The motion of shell is represented by the first order shear deformation theory (FSDT) to account for rotary inertia and transverse shear strains. The effect of internal fluid can be considered by imposing a relation between the fluid pressure and the radial displacement of the structure at the interface. Numerical examples are presented and compared with existing results.

내압을 받는 복합 적층 파이프(GFRP) 구조의 유한요소 해석 (Finite Element Analysis of Glass Fiber Reinforced Plastic Pipes Under Internal Pressure)

  • 조병완
    • 전산구조공학
    • /
    • 제7권2호
    • /
    • pp.101-109
    • /
    • 1994
  • 내압을 받는 섬유강화 복합적층 파이프 구조를 해석하기 우해 감절점 원통형 쉘 유한요소를 이용하였다. 이요소는 lockintg현상을 제거하고, 수렴성을 개선하기 위해 감차적분기법, 변위형의 추가, 가정된 전단 변형 도장을 사용한 9절점의 3차원 쉘 유한요소이다. 이 유한요소를 이용하여 여러개의 예제를 해석하고, 결과를 이론식 및 다른 구조해석 프로그램과 비교하였다. 비교결과 유한요소의 수렴도 양호하였고, 섬유강과 복합적층 파이프 구조의 섬유 배향 각도를 증가시킴에 따라 파이프의 처짐은 감소하면서 파이프의 강성이 증가함을 알 수 있고 이는 또한 90.deg.적층 각도가 내압을 받는 파이프 구조의 hoop tension을 유효하게 받을 수 있음을 보여주고 있다.

  • PDF

Time-dependent creep analysis and life assessment of 304 L austenitic stainless steel thick pressurized truncated conical shells

  • Kashkoli, Mosayeb Davoudi;Nejad, Mohammad Zamani
    • Steel and Composite Structures
    • /
    • 제28권3호
    • /
    • pp.349-362
    • /
    • 2018
  • This paper presents a semi-analytical solution for the creep analysis and life assessment of 304L austenitic stainless steel thick truncated conical shells using multilayered method based on the first order shear deformation theory (FSDT). The cone is subjected to the non-uniform internal pressure and temperature gradient. Damages are obtained in thick truncated conical shell using Robinson's linear life fraction damage rule, and time to rupture and remaining life assessment is determined by Larson-Miller Parameter (LMP). The creep response of the material is described by Norton's law. In the multilayer method, the truncated cone is divided into n homogeneous disks, and n sets of differential equations with constant coefficients. This set of equations is solved analytically by applying boundary and continuity conditions between the layers. The results obtained analytically have been compared with the numerical results of the finite element method. The results show that the multilayered method based on FSDT has an acceptable amount of accuracy when one wants to obtain radial displacement, radial, circumferential and shear stresses. It is shown that non-uniform pressure has significant influences on the creep damages and remaining life of the truncated cone.

Stress and Electric Potential Fields in Piezoelectric Smart Spheres

  • Ghorbanpour, A.;Golabi, S.;Saadatfar, M.
    • Journal of Mechanical Science and Technology
    • /
    • 제20권11호
    • /
    • pp.1920-1933
    • /
    • 2006
  • Piezoelectric materials produce an electric field by deformation, and deform when subjected to an electric field. The coupling nature of piezoelectric materials has acquired wide applications in electric-mechanical and electric devices, including electric-mechanical actuators, sensors and structures. In this paper, a hollow sphere composed of a radially polarized spherically anisotropic piezoelectric material, e.g., PZT_5 or (Pb) (CoW) $TiO_3$ under internal or external uniform pressure and a constant potential difference between its inner and outer surfaces or combination of these loadings has been studied. Electrodes attached to the inner and outer surfaces of the sphere induce the potential difference. The governing equilibrium equations in radially polarized form are shown to reduce to a coupled system of second-order ordinary differential equations for the radial displacement and electric potential field. These differential equations are solved analytically for seven different sets of boundary conditions. The stress and the electric potential distributions in the sphere are discussed in detail for two piezoceramics, namely PZT _5 and (Pb) (CoW) $TiO_3$. It is shown that the hoop stresses in hollow sphere composed of these materials can be made virtually uniform across the thickness of the sphere by applying an appropriate set of boundary conditions.