• Title/Summary/Keyword: Internal heat generation

Search Result 97, Processing Time 0.024 seconds

Effect of Thermal Management of Lithium-Ion Battery on Driving Range of Electric Vehicle (리튬이온 배터리의 열관리가 전기자동차 주행거리에 미치는 영향)

  • Park, Chul-Eun;Yoo, Se-Woong;Jeong, Young-Hwan;Kim, Kibum
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.5
    • /
    • pp.22-28
    • /
    • 2017
  • The performance of lithium ion batteries used in electric vehicles (EV) varies greatly depending on the battery temperature. In this paper, the finite difference method was used to evaluate the temperature change, state of charge (SOC), internal resistance, and voltage change of the battery due to heat generation in the battery. The simulation model was linked with AMESim to calculate the driving range of an EV traveling in New European Driving Cycle (NEDC) mode. As the temperature dropped below $25^{\circ}C$, the internal resistance of the battery increased, which increased the amount of heat generated and decreased the driving range of EV. At battery temperatures above $25^{\circ}C$, the driving range was also decreased due to reduced SOC that deteriorated the battery performance. The battery showed optimal performance and the driving range was maximized at $25^{\circ}C$. When battery temperatures of $-20^{\circ}C$ and $45^{\circ}C$, the driving range of EV decreased by 33% and 1.8%, respectively. Maintaining the optimum battery temperature requires heating the battery at low temperature and cooling it down at high temperature through efficient battery thermal management. Approximately 500 W of heat should be supplied to the battery when the ambient temperature is $-20^{\circ}C$, while 250 W of heat should be removed for the battery to be maintained at $25^{\circ}C$.

Fast Defect Detection of PCB using Ultrasound Thermography (초음파 서모그라피를 이용한 빠른 PCB 결함 검출)

  • Cho, Jai-Wan;Jung, Hyun-Kyu;Seo, Yong-Chil;Jung, Seung-Ho;Kim, Seung-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.273-275
    • /
    • 2005
  • Active thermography is being used since several years for remote non-destructive testing. It provides thermal images for remote detection and imaging of damages. Also, it is based on propagation and reflection of thermal waves which are launched from the surface into the inspected component by absorption of modulated radiation. For energy deposition, it use external heat sources (e.g., halogen lamp or convective heating) or internal heat generation (e.g., microwaves, eddy current, or elastic wave). Among the external heat sources, the ultrasound is generally used for energy deposition because of defect selective heating up. The heat source generating a thermal wave is provided by the defect itself due to the attenuation of amplitude modulated ultrasound. A defect causes locally enhanced losses and consequently selective heating up. Therefore amplitude modulation of the injected ultrasonic wave turns a defect into a thermal wave transmitter whose signal is detected at the surface by thermal infrared camera. This way ultrasound thermography(UT) allows for selective defect detection which enhances the probability of defect detection in the presence of complicated intact structures. In this paper the applicability of UT for fast defect detection is described. Examples are presented showing the detection of defects in PCB material. Measurements were performed on various kinds of typical defects in PCB materials (both Cu metal and non-metal epoxy). The obtained thermal image reveals area of defect in row of thick epoxy material and PCB.

  • PDF

An Experimental Study on Hydration Heat Characteristics for Thermal Crack Analysis Based on FEM of Urea Mixed Mass Concrete (Urea 혼입 매스콘크리트의 FEM 온도균열 해석을 위한 수화발열특성에 관한 실험적 연구)

  • Mun, Dong-Hwan;Jang, Hyun-O;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.05a
    • /
    • pp.36-37
    • /
    • 2019
  • In domestic construction industry progress, construction and quality control of large structures are considered to be important as the superstructure and mass scale of structures. In the case of mass concrete, high hydration heat caused by cement hydration generates temperature stress by generating internal temperature difference with the concrete surface. These temperature stresses cause cracks to penetrate the concrete structure. A method of lowering the heat generation by incorporating Urea in order to reduce the concrete temperature crack has been proposed. In this study, the heat function coefficient for the FEM temperature crack analysis of the mass concrete containing the element was derived and the adiabatic temperature rise test was carried out according to the incorporation of the element. As a result of this experiment, the maximum temperature of 41 ± 1℃ was obtained irrespective of the amount of urea, and the maximum temperature decreased by 16.9℃ in concrete containing 40kg/㎥ of urea.

  • PDF

A study of guaranteeing reliability for IC of electronic instruments according temperature

  • Yoon, Geon;Park, Yong-Oon;Kwon, Soon-Chang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.320-323
    • /
    • 2005
  • This paper discusses heat problem of IC, which composes the electronic instruments, to guarantee reliability of electronic instruments. And also proposes the unified equivalent model for various electronic instrument products to guarantee reliability and life of its parts. Because electronic instruments are down sizing and operated with high frequency, the internal temperature of electronic instruments is rising steadily. The internal temperature of the electronic instruments gives a big effect to electronic instrument's reliability and life. The semiconductor parts are the representative heat generation parts because of its complicated function, high frequency and high density. Consequently, guaranteeing reliability and life of electronic semiconductor is the important start point in securing the reliability and life of the electronic instrument product. Unfortunately, there are many factors, which affect heat dissipation efficiency. The heat dissipation efficiency follows the environment where the electronic instrument products are used. Therefore it is very difficult to define reliability and life of the electronic manufactures. Electronic instrument products are composed of printed circuit board (PCB), integrated circuit (IC), resistance, and capacitor and so on. And there are superposed thermal resistances, because the parts are arrayed on the printed circuit board (PCB), Therefore the total thermal resistance is variable. Consequently it cannot have same thermal model for each electronic instrument products. In the next part, we propose the unified equivalent model for various electronic instruments. And using the proposed equivalent model proofs the method for analysis reliability of electronic parts.

  • PDF

A Study on Optimization of Reformer for kW Class SOFC System (kW급 SOFC 시스템용 개질기 최적화)

  • YI, YONG;PARK, SE JIN;KIM, MIN SOO;SHIN, JANG SIK;SHIN, SEOCK JAE
    • Journal of Hydrogen and New Energy
    • /
    • v.29 no.4
    • /
    • pp.317-323
    • /
    • 2018
  • Solid oxide fuel cell (SOFC) operates at high temperature, therefor has the advantage of higher power generation and using exhaust heat than other fuel cells. In particular, the reforming reaction can be performed inside the SOFC stack to reduce the cooling of the stack and the burden on the reformer reactor. In this study, the reformer structure, operating characteristics, and thermal efficiency were evaluated for the optimization design of a heat exchanger type reformer of a 1 kW SOFC system.

Chemical and Free Radical-scavenging Activity Changes of Ginsenoside Re by Maillard Reaction and Its Possible Use as a Renoprotective Agent

  • Yamabe, Noriko;Song, Kyung-Il;Lee, Woo-Jung;Han, Im-Ho;Lee, Ji-Hwan;Ham, Jung-Yeob;Kim, Su-Nam;Park, Jeong-Hill;Kang, Ki-Sung
    • Journal of Ginseng Research
    • /
    • v.36 no.3
    • /
    • pp.256-262
    • /
    • 2012
  • Reactive oxygen species play critical role in kidney damage. Free radical-scavenging activities of Panax ginseng are known to be increased by heat-processing. The structural change of ginsenoside and the generation of Maillard reaction products (MRPs) are closely related to the increased free radical-scavenging activities. In the present study, we have demonstrated the Maillard reaction model experiment using ginsenoside Re and glycine mixture to identify the renoprotective effect of MRPs from ginseng or ginsenosides. Ginsenoside Re was transformed into less-polar ginsenosides, namely Rg2, Rg6 and F4 by heat-processing. The free radical-scavenging activity of ginsenoside Re-glycine mixture was increased in a temperature-dependant manner by heatprocessing. The improved free radical-scavenging activity by heat-processing was mediated by the generation of antioxidant MRPs which led to the protection of LLC-PK1 renal epithelial cells from oxidative stress. Although the free radical scavenging activities of less-polar ginsenosides were weak, they could protect LLC-PK1 cells from oxidative stress. Therefore, MRPs and less-polar ginsenosides contributed to the combined renoprotective effects against oxidative renal damage.

Analysis of Temperature Distribution in a Rolling Tire due to Strain Energy Dissipation (회전하는 타이어의 변형에너지 손실에 의한 온도분포 해석)

  • Park, Hyun-Cheol;Youn, Sung-Kie;Song, Tae-Sok;Kim, Nam-Jeon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.5
    • /
    • pp.746-755
    • /
    • 1997
  • This paper addresses the systematic procedure using sequential approach for the analysis of the coupled thermo-mechanical behavior of a steady rolling tire. Not only the knowledge of mechanical stresses but also of the temperature loading in a rolling tire are very important because material damage and material properties are significantly affected by the temperature. In general, the thermo-mechanical behavior of a pneumatic tire is highly complex transient phenomenon that requires the solution of a dynamic nonlinear coupled themoviscoelasticity problem with heat source resulting from internal dissipation and friction. In this paper, a sequential approach, with effective calculation schemes, to modeling this system is presented in order to predict the temperature distribution with reasonable sccuracies in a steady state rolling tire. This approach has the three major analysis modules-deformation, dissipation, and thermal modules. In the dissipation module, an analytic method for the calculation of the heat source in a rolling tire is established using viscoelastic theory. For the verification of the calculated temperature profiles and rolling resistance at different velocities, they were compared with the measured ones.

Mass and Heat Transfer Analysis of Membrane Humidifier with a Simple Lumped Mass Model (단순모델을 이용한 막 가습기 열 및 물질 전달 특성 해석)

  • Yu, Sang-Seok;Lee, Young-Duk;Bae, Ho-June;Hwang, Joon-Young;Ahn, Kook-Young
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.8
    • /
    • pp.596-603
    • /
    • 2009
  • The performance of proton exchange membrane fuel cell (PEMFC) is seriously changed by the humidification condition which is intrinsic characteristics of the PEMFC. Typically, the humidification of fuel cell is carried out with internal or external humidifier. A membrane humidifier is applied to the external humidification of residential power generation fuel cell due to its convenience and high performance. In this study, a simple static model is constructed to understand the physical phenomena of the membrane humidifier in terms of geometric parameters and operating parameters. The model utilizes the concept of shell and tube heat exchanger but the model is also able to estimate the mass transport through the membrane. Model is constructed with FORTRAN under Matlab/$Simulink^{(R)}$ $\Box$environment to keep consistency with other components model which we already developed. Results shows that the humidity of wet gas and membrane thickness are critical parameters to improve the performance of the humidifier.

Natural Convection Flow and Heat Transfer in a Fluid Heated Internally within an Inclined Rectangular Enclosure (경사진 직사각형 공간내에서 내부적으로 가열되는 유체의 자연대류유동 및 열전달)

  • 이재헌;김재근;박만흥
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.3
    • /
    • pp.555-568
    • /
    • 1992
  • A asic study is performed on two-dimensional natural convective flow and heat transfer in a fluid heated internally within an inclined rectangular enclosures. For Rayleign numbers from 1.0*10$^{4}$to 1.5*10$^{5}$ , aspect ratio of 1/4, 1/3 and 1/2, and inclined angle from 0deg to 90deg, the governing equations were solved numerically and the experiments were performed by MachZehnder interferometer using low salinity water as a test fluid. For aspect ratios adapted in present study, the natural convection occures the most intensive at inclined angle of 0deg. This became weak at inclined angles of 60deg and 30deg in case of aspect ratios of 1/3 and 1/2 respectively. The intensity of flow was roughly in proportion to Rayliegh numbers and in proportion to the forth power of aspect ratios.

Study of Thermoelectric Generator with Various Thermal Conditions for Exhaust Gas from Internal Combustion Engine using Numerical Analysis (수치해석을 통한 엔진 배기가스의 조건 변화에 따른 열전소자 발전 특성에 관한 연구)

  • In, Byung Deok;Lee, Ki Hyung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.3
    • /
    • pp.243-248
    • /
    • 2013
  • Internal combustion engines typically expel 30%-40% of the energy supplied by fuel to the environment through their exhaust system. Therefore, further significant improvements in the thermal efficiency of IC engines are possible by recovering the waste heat from the engine exhaust gas. With this fact in mind, a numerical simulation was carried out to investigate the potential of using thermoelectric generation with an internal combustion engine for waste heat recovery. Physical parameters such as the exhaust temperature and mass flow rate were evaluated in the exhaust system, and the optimum location for inserting a thermoelectric generator (TEG) into the system was determined. The TEG will be located in the exhaust system and will use the energy flow between the warmer exhaust gas and the external environment. The optimum position of the temperature distribution and the TEG performance were predicted through numerical analysis. The experimental results obtained showed that the power output significantly increases with the temperature difference between the cold and hot sides of the TEG.