• 제목/요약/키워드: Internal energy distribution

검색결과 242건 처리시간 0.026초

냉매분배기 분배성능에 미치는 내부 형상인자의 영향 (Effects of the Internal Structure on the Distribution Performance of a Refrigerant Distributor)

  • 김동휘;사용철;정백영;박병덕
    • 한국수소및신에너지학회논문집
    • /
    • 제24권5호
    • /
    • pp.444-450
    • /
    • 2013
  • The distribution performance of refrigerant distributors in air conditioner evaporators was examined numerically and experimentally. Internal flow analysis of the distributor by CFD found that the distance from the socket to the cone, the angle of the cone and the base area of the cone were the most important factors affecting refrigerant distribution ability and vortex creation. To enhance distribution performance, two distributors with improved internal structures were designed. To test these new structures, distribution performance was also analyzed by CFD and an empirical experiment was carried out using the water-nitrogen. Experimental results on the distribution fraction of each distributor hole showed a good agreement with the results of the CFD analysis. Thus, the new design of the distributors enhanced distribution performance of the refrigerant distributors.

STUDY OF INTERNAL RECYCLE DISTRIBUTION AND HEAT TRANSFER EFFECT FOR OPTIMAL DESIGN OF DIVIDING WALL DISTILLATION COLUMNS

  • Lee, Ki-Hong;Lee, Moon-Yong;Jeong, Seong-Oh
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.2319-2324
    • /
    • 2003
  • This paper addresses the optimal design of dividing wall distillation column which is rapidly applied in a variety of chemical processes over recent several years because of its high energy saving efficiency. A general dividing wall column model which can cope with the heat transfer through the dividing wall is developed using rigorous computer simulation. Based on the simulation model, the effects of the internal recycle flow distribution around the dividing wall and the heat transfer across the dividing wall on overall system performance are investigated. An improved method is suggested to utilize the heat transfer through the wall to optimal column design. The suggested method is compared with the existing method via. simulation study and shows more improved energy saving result. Several control strategies for the divided wall column are tested and the optimal control strategy is propose

  • PDF

분리벽형 증류탑의 최적 설계를 위한 내부 순환량 분포와 전열 특성 연구 (Internal Recycle Distribution and Heat Transfer Effect for Optimal Design of Dividing Wall Distillation Columns)

  • 정성오;이기홍;이문용
    • 제어로봇시스템학회논문지
    • /
    • 제9권3호
    • /
    • pp.236-241
    • /
    • 2003
  • This paper addresses the optimal design of dividing wall distillation column which is rapidly applied in a variety of chemical processes over recent several years because of its high energy saving efficiency. A general dividing wall column model which can cope with the heat transfer through the dividing wall is developed using rigorous computer simulation. Based on the simulation model, the effects of the internal recycle flow distribution around the dividing wall and the heat transfer across the dividing wall on overall system performance are investigated. An improved column design method is suggested to utilize the heat transfer through the wall. The suggested method is compared with the existing method via simulation study in which the proposed design shows improved energy saving result.

전항력을 이용한 회전 블레이드 냉각성능 향상 방안 연구 (Advanced Internal Cooling Passage of Turbine Blade using Coriolis Force)

  • 박준수
    • 융복합기술연구소 논문집
    • /
    • 제6권1호
    • /
    • pp.37-41
    • /
    • 2016
  • The serpentine internal passage is located in turbine blade and it shows the variety heat transfer distribution. Especially, the Coriolis force, which is induced by blade rotation, makes different heat transfer distribution of the leading and trailing surfaces of serpentine internal passage. The different heat transfer is one of the reasons why the serpentine cooling passage shows low cooling performance in the rotating condition. So, this study tried to design the advanced the serpentine passage to consideration of the Coriolis force. The design concept of advanced serpentine cooling is maximizing cooling performance using the Coriolis force. So, the flow turns from leading surface to trailing surface in advanced serpentine passage to match the direction of Coriolis force and rotating force. We performed numerical analysis using CFX and compared the existing and advanced serpentine internal passage. This design change is induced the high heat transfer distribution of whole advanced serpentine internal passage surfaces.

태양의 위치에 따른 광파이프 시스템의 실내 주광환경평가 (Assessment of Daylight Environment on Light Pipe System Under Different Solar Position)

  • 신화영;김정태
    • 한국태양에너지학회 논문집
    • /
    • 제28권6호
    • /
    • pp.78-86
    • /
    • 2008
  • The aim of this paper is to show the daylight environment of a light pipe system according to sun movement. A light pipe system has been mounted on the roof of the windowless full scale model: the solar spot has diameter of 0.65m and is 1.3m long, giving an aspect ratio of 1:2. The full scale model was installed on the rooftop of the SHINAN apartment in Yongin city that has no obstructions against sunlight. The test room is equipped with sensors for the measurements of the internal illuminance and has an area of 6m(W)$\times$6m(D)$\times$4m(H). The system has been monitored with a data-logger to evaluate the cumulative distribution of illuminance on a floor-plane from 16th, April to 29th, May, 2008 over one month and selected clear sky condition. For the daylight performance of floor area, the totally 49 measuring points has been used to determine the internal illuminance and an HP datalogger(HP34970A) records the measurements for one consecutive month. The horizontal external illuminance has been measured with two outdoor sensors. This paper presents the results of monitoring light pipe system with internal/external illuminance ratio and cumulative frequency distribution of floor-plane illuminance are discussed The results show that lightpipe is proficient device for introducing daylight into the building. However It provided different daylight indoor environment with wide or narrow Interquatile range of illuminance, internal/external illuminance ratio and cumulative frequency distribution according to solar positions under suuny sky condition. For more achieving the improvement of lightpipes also include energy savings, user visual comfort with various indicators; seasonal solar height, room and lightpipes geometries.

VISUALIZATION OF INTERNAL DEFECTS IN PLATE-TYPE NUCLEAR FUEL BY USING NONCONTACT OPTICAL INTERFEROMETRY

  • Park, Seung-Kyu;Park, Nak-Gyu;Baik, Sung-Hoon;Kang, Young-June
    • Nuclear Engineering and Technology
    • /
    • 제45권3호
    • /
    • pp.361-366
    • /
    • 2013
  • An imaging technique to visualize the internal defects in a plate-type nuclear fuel specimen was developed by using an active optical interferometer for a nondestructive quality inspection. A periodic thermal wave having a sinusoidal intensity pattern induced a periodical strain variation for the specimen. The varying strain image was acquired using an optical laser interferometer. The strain distribution over the internal defects will be distorted in an acquired strain image because a part of the thermal wave will be reflected from these defects during propagation. In this paper, internal defects were efficiently visualized by sequentially accumulating the extracted defect components. The experimental results confirmed that the developed visualization system can be a valuable tool to detect the internal defects in plate-type nuclear fuel.

Surface Treatment of Eggshells with Low-Energy Electron Beam

  • Kataoka, Noriaki;Kawahara, Daigo;Sekiguchi, Masayuki
    • Journal of Radiation Protection and Research
    • /
    • 제46권1호
    • /
    • pp.8-13
    • /
    • 2021
  • Background: Salmonella enteritidis (SE) was the main cause of the pandemic of foodborne salmonellosis. The surface of eggs' shells can be contaminated with this bacterium; however, washing them with sodium hypochlorite solution not only reduces their flavor but also heavily impacts the environment. An alternative to this is surface sterilization using low-energy electron beam. It is known that irradiation with 1 kGy resulted in a significant 3.9 log reduction (reduction factor of 10,000) in detectable SE on the shell. FAO/IAEA/WHO indicates irradiation of any food commodity up to an overall average dose of 10 kGy presents no toxicological hazard. On the other hand, the Food and Drug Administration has deemed a dose of up to 3 kGy is allowable for eggs. However, the maximum dose permitted to be absorbed by an edible part (i.e., internal dose) is 0.1 Gy in Japan and 0.5 Gy in European Union. Materials and Methods: The electron beam (EB) depth dose distribution in the eggshell was calculated by the Monte Carlo method. The internal dose was also estimated by Monte Carlo simulation and experimentation. Results and Discussion: The EB depth dose distribution for the eggshells indicated that acceleration voltages between 80 and 200 kV were optimal for eggshell sterilization. It was also found that acceleration voltages between 80 and 150 kV were suitable for reducing the internal dose to ≤ 0.10 Gy. Conclusion: The optimum irradiative conditions for sterilizing only eggshells with an EB were between 80 and 150 kV.

음향에너지를 이용한 내부 혼합형 이유체 분사노즐의 분무특성 (Spray Characteristics of Internal-Mixing Twin-Fluid Atomizer using Sonic Energy)

  • 조형건;강원수;석지권;이근선;이충원
    • 한국분무공학회지
    • /
    • 제4권3호
    • /
    • pp.32-41
    • /
    • 1999
  • In this research, internal-mixing twin-fluid atomizer using sonic energy is designed and manufactured. We are trying to intimate high efficiency twin-fluid atomizer to obtain good liquid atomization in the low pressure region. Define of geometric form of atomizer, characteristics of spray is influenced by position, depth and height variation of cavity resonator, variation of sound intensity and resonant sound frequency with liquid flow rate. The liquid atomization is promoted by multi-stage disintegration of mixing flow of gas with liquid and the optimum condition of position and depth of cavity resonator according to sonic energy is obtained from the condition at a=2.5mm and L=2mm. The velocity distribution of droplets shows negative value due to recirculation region at the center of axial, and as the radial direction distance is far, the velocity distribution of droplets decrease slowly after having a maximum value. However velocity and SMD show nearly uniform distribution at the down stream and as result compared to Nukiyama and Tanasawa's equation. atomization of mixing flow with air and liquid dispersing from the outlet of the nozzle is promoted by the effect of collision at the cavity resonator.

  • PDF

Dynamics of OH Production in the Reaction of O(1D2) with Cyclopropane

  • Jang, Sungwoo;Jin, Sung Il;Kim, Hong Lae;Kim, Hyung Min;Park, Chan Ryang
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권6호
    • /
    • pp.1706-1712
    • /
    • 2014
  • The OH($X^2{\Pi}$, ${\upsilon}^{\prime\prime}=0,1$) internal state distribution following the reaction of electronically excited oxygen atom ($O(^1D_2)$) with cyclo-$C_3H_6$ has been measured using laser-induced fluorescence, and compared with that following the reaction of $O(^1D_2)$ with $C_3H_8$. The overall characteristics of the OH internal energy distributions for both reactions were qualitatively similar. The population propensity of the ${\Pi}(A^{\prime})$ ${\Lambda}$-doublet sub-level suggested that both reactions proceeded via an insertion/elimination mechanism. Bimodal rotational population distributions supported the existence of two parallel mechanisms for OH production, i.e., statistical insertion and nonstatistical insertion. However, detailed analysis revealed that, despite the higher exoergicity of the reaction, the rotational distribution of the OH following the reaction of $O(^1D_2)$ with $C_3H_8$ was significantly cooler than that with cyclo-$C_3H_6$, especially in the vibrational ground state. This observation was interpreted as the effect of the flexibility of the insertion complex and faster intramolecular vibrational relaxation (IVR).

Fabrication of Carbon-dispersed $UO_3$ Microspheres by an Internal Gelation

  • Lee, Jung-Won;Lee, Young-Woo;Shigeru Yamagishi;Akinori Itoh;Toru Ogawa
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1995년도 추계학술발표회논문집(2)
    • /
    • pp.662-667
    • /
    • 1995
  • An internal gelation process was adopted for the fabrication of carbon-dispersed UO$_3$ microspheres which will be fed to the fabrication for uranium nitride microsphere fuels by the carbothermic reduction. For investigating the proper process conditions, a composition range of feed solution for preparing good UO$_3$ gel spheres was firstly defined by observing the gelation behavior. Within the defined solution compositions, carbon-dispersed microspheres were prepared and carbon distribution in microspheres were observed by SEM. The results showed that production of good carbon-dispersed microspheres was possible, and the most of carbon were evenly distributed in the microspheres although large carbon-rich aggregates were sparsely existent.

  • PDF