• Title/Summary/Keyword: Internal connection implant

Search Result 97, Processing Time 0.026 seconds

Clinical considerations of use of titanium link - CAD/CAM zirconia abutment for dental implant in esthetically important areas (심미가 중요시되는 임플란트 치료시 타이타늄 링크-캐드캠 지르코니아 지대주 사용의 임상적 고려)

  • Kim, Jong-Yub
    • The Journal of the Korean dental association
    • /
    • v.54 no.2
    • /
    • pp.123-133
    • /
    • 2016
  • Currently increasing use of implants, especially in anterior implant esthetics has become a major concern for both the patient and dentist. In the case of thin biotype if the thickness of the gingival soft tissue is less than 2mm, human eye can detect differences of colors depends on underlying materials. The zirconia abutment can be use not only for better esthetics but also for the hygienic because it is less attractive for the plaque deposition when it compare to the metals. Zirconia itself has many advantages as a biomaterial but also has frequent mechanical problems when it use for abutment of internal connection implant. For prevention or reduction of mechanical failures, use of titanium-link with zirconia super-structure which part that connects directly into the implant can be a good alternative. In this literature, I would like to review the clinical considerations of use of titanium link - CAD/CAM zirconia abutment for dental implant in esthetically important areas.

  • PDF

Fit analysis of CAD-CAM custom abutment using micro-CT (Micro-CT를 이용한 맞춤형 CAD-CAM 지대주의 적합성 분석)

  • Min, Gwang-Seok;Chung, Chae-Heon;Kim, Hee-Jung
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.54 no.4
    • /
    • pp.370-378
    • /
    • 2016
  • Purpose: The purpose of this study was to investigate screw joint stability and sagittal fit between internal connection implant fixtures of two different manufacturers and customized abutments. Materials and methods: Internal connection implant systems from two different manufacturers (Biomet 3i system, Astra Tech system) were selected for this study (n=24 for each implant system, total n=48). For 3i implant system, half of the implants were connected with Ti ready-made abutments and the other half implants were connected with Ti CAD-CAM custom ones of domestic-make (Myplant, Raphabio Co., Seoul, Korea) and were classified into Group 1 and Group 2 respectively. Astra implants were divided into Group 3 and Group 4 in the same way. Micro-CT sagittal imaging was performed for fit analysis of interfaces and preloading reverse torque values (RTV) were measured. Results: In the contact length of fixture-abutment interface, there were no significant differences not only between Group 1 and Group 2 but also between Group 3 and Group 4 (Mann-Whitney test, P>.05). However, Group 2 and Group 4 showed higher contact length significantly than Group 1 and Group 3 in abutment-screw interface as well as fixture-screw one (Mann-Whitney test, P<.05). In addition, RTV was lower in CAD-CAM custom abutments compared to ready-made ones (Student t-test, P<.05). Conclusion: It is considered that domestically manufactured CAD-CAM custom abutments have similar fit at the fixture abutment interface and it could be used clinically. However, RTV of CAD-CAM custom abutments should be improved for the increase of clinical application.

Effect of morphology and diameter of implant fixture-abutment connection on mechanical failure of implants (임플랜트 고정체-지대주 연결부의 형태와 직경이 임플랜트의 기계적 실패에 미치는 영향)

  • Yun, Bo-Hyeok;Shin, Hyon-Mo;Yun, Mi-Jung;Huh, Jung-Bo;Jeong, Chang-Mo;Kang, Eun-Sook
    • The Journal of the Korean dental association
    • /
    • v.53 no.9
    • /
    • pp.644-655
    • /
    • 2015
  • Purpose: This study was conducted to evaluate the effect of the fixture abutment connection type and diameter on the screw joint stability in external butt joint for 2nd surgery and internal cone connected type implant system for 1st and 2nd surgery using ultimate fracture strength. Materials and Methods: USII system, SSII system and GSII system of Osstem Implant were used. Each system used the fixture with two different diameters and cement-retained abutments, and tungsten carbide / carbon coated abutment screws were used. Disc shaped stainless steel metal tube was attached using resin-based temporary cement. The experimental group was divided into seven subgroups, including the platform switching shaped specimen that uses a regular abutment in the fixture with a wide diameter in USII system. A static load was increased to the metal tube at 5mm deviated point from the implant central axis until it reached the compression bending strength at a rate of 1mm/min. Then the deformations and patterns of fracture in threaded connection were compared. Results and Conclusion: 1. In the comparison between the Regular diameter, compression bending strength of SSII system was higher than USII system and GSII system. There was no significant difference between USII system and GSII system. 2. In the comparison between wide diameter, compression bending strength was increased in the order of GSII system, USII system, and SSII system. 3. In comparison between the implant diameter, compression bending strength of the wide diameter was greater than the regular diameter in any system(P<0.05). 4. There was no significant difference between the platform switching (III group) and the regular diameter (I group) in USII system. 5. In USII system, fracture of abutment screw and deformation of both fixture and abutment were observed in I, II and III subgroups. 6. Failure pattern of SSII system, which was the fracture of abutment screw and deformation of the abutment and fixture, was observed in both IV and V subgroups. Fracture of some fixtures was observed in subgroup V. 7. Failure pattern of GSII system, which was the fracture of the abutment screw and deformation of the fixture and the abutment, was observed in both VI and VII subgroups. Apart from other subgroups, subgroup VII demonstrated no bending neither the fracture at the top of the fixture. The compressive deformation of internal slope in the fixture was the only thing observed in subgroup VII.

COMPARATIVE ACCURACY OF THE SPLINTED AND UNSPLINTED IMPRESSION METHODS FOR INTERNAL CONNECTION

  • Choi, Jung-Han;Kim, Chang-Whe;Jang, Kyung-Soo;Lim, Young-Jin
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.43 no.3
    • /
    • pp.352-362
    • /
    • 2005
  • Statement of problem. Accurate impression is essential to success of implant prostheses. But there have been few studies about the accuracy of fixture-level impression techniques in internal connection implant systems. Purpose. The purpose of this study was to compare the accuracy of two fixture-level impression techniques in two conditions (parallel and divergent) and to assess the effect of tightening sequences and forces on stresses generated on superstructures in internal connection implant system (Astra Tech). Material and methods. Two metal master frameworks made from two abutments (Cast-to Abutment ST) each and a corresponding, passively fitting, dental stone master cast with four fixture replicas (Fixture Replica ST) were fabricated. Ten dental stone casts for each impression techniques (direct unsplinted & splinted technique) were made with vinyl polysiloxane impressions from the master cast. Strain gauges for each framework were fixed midway between abutments to measure the degree of framework deformation on each stone cast. Pairs of strain gauges placed opposite each other constituted one channel (half Wheatstone bridge) to read deformation in four directions (superior, inferior, anterior, and posterior). Deformation data were analyzed using one-way ANOVA and the Tukey test at the .01 level of significance. And the effect of tightening sequences (right-to-left and left-to-right) and forces (10 Ncm and 20 Ncm) were assessed with ten stone casts made from parallel condition by the splinted technique. Deformation data were analyzed using paired t-test at the .01 level of significance. Conclusions. Within the limitations of this study, the following conclusions could be drawn. 1. Frameworks bent toward the inferior side on all casts made by both direct unsplinted and splinted impression techniques in both parallel and divergent conditions. 2. There was no statistically significant difference of accuracy between the direct unsplinted and splinted impression techniques in both parallel and divergent conditions (P>.01). 3. There was no statistically significant difference of stress according to screw tightening sequences in casts made by the splinted impression technique in parallel condition (P>.01). 4. Greater tightening force resulted in greater stress in casts made by the splinted impression technique in parallel condition (P<.01).

Effect of cyclic loading and retightening on reverse torque value in external and internal implants

  • Cho, Woong-Rae;Huh, Yoon-Hyuk;Park, Chan-Jin;Cho, Lee-Ra
    • The Journal of Advanced Prosthodontics
    • /
    • v.7 no.4
    • /
    • pp.288-293
    • /
    • 2015
  • PURPOSE. The aim of this study was to evaluate the effect of cyclic loading and screw retightening on reverse torque value (RTV) in external and internal type implants. MATERIALS AND METHODS. Cement-retained abutments were connected with 30 Ncm torque to external and internal type implants. Experimental groups were classified according to implant connection type and retightening/loading protocol. In groups with no retightening, RTV was evaluated after cyclic loading for 100,000 cycles. In groups with retightening, RTV was measured after 3, 10, 100 cycles as well as every 20,000 cycles until 100,000 cycles of loading. RESULTS. Every group showed decreased RTV after cyclic loading. Before and after cyclic loading, external type implants had significantly higher RTVs than internal type implants. In external type implants, retightening did not affect the decrease in RTV. In contrast, retightening 5 times and retightening after 10 cycles of dynamic loading was effective for maintaining RTV in internal type implants. CONCLUSION. Retightening of screws is more effective in internal type implants than external type implants. Retightening of screws is recommended in the early stage of functional loading.

Long-term Retrospective Clinical Study Comparing Submerged Type with External Hex Connection and Non-submerged Type with Internal Morse Taper Connection Implants

  • Kwoen, Min-Jeong;Kim, Sang-Yun;Kim, Young-Kyun
    • Journal of Korean Dental Science
    • /
    • v.12 no.1
    • /
    • pp.29-37
    • /
    • 2019
  • Purpose: This study was aimed to compare the survival and success rates, and long-term crestal bone loss according to the use of 2 connection types of dental implants (submerged-USII and non-submerged-SSII; Osstem $Implant^{(R)}$) by analyzing the change in alveolar bone height after 1 year under load and during final follow-up period. Materials and Methods: Between December 2004 and August 2008, patients with two types of Osstem implants (USII and SSII) were retrieved retrospectively. A total of 92 patients with 284 implants (USII=60, SSII=224) was finally selected. Their mean follow-up period was 7.5 years. The mesial and distal alveolar crestal bone changes were measured using radiographic images and the average was calculated at 1 year after loading and during final follow-up period. Result: Among the 284 implants, 4 USII and 7 SSII implants were removed, indicating 93.3% and 96.9% survival rates. Of the survived implants, mean crestal bone loss 1 year after loading was 0.39 mm for USII and 0.19 mm for SSII (P=0.018). During the final follow-up, mean crestal bone loss was 0.63 mm and 0.35 mm for USII and SSII, respectively, without statistical significance (P=0.092). According to the criteria for the success and failure of the implant by Albreksson and colleagues, final success rate was estimated as 86.7% for USII and 91.5% for SSII, respectively. Conclusion At 1 year after loading, the average crestal bone loss was significantly different between USII and SSII; however, both types met the criteria for implant success. During the final follow-up, both groups showed insignificant bone resorption patterns and did not show any pathological clinical symptoms. Therefore, both implants exhibited high long-term stability.

Three-Dimensional Finite Element Analysis of Internal Connection Implant System (Gsii$^{(R)}$) According to Three Different Abutments and Prosthetic Design (국산 내부연결형 임플란트시스템(GS II$^{(R)}$)에서 지대주 연결방식에 따른 응력분석에 관한 연구)

  • Jang, Mi-Ra;Kwak, Ju-Hee;Kim, Myung-Rae;Park, Eun-Jin;Park, Ji-Marn;Kim, Sun-Jong
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.26 no.2
    • /
    • pp.179-195
    • /
    • 2010
  • In the internal connection system, the loading transfer mechanism within the inner surface of the implant and also the stress distribution occuring to the mandible can be changed according to the abutment form. Therefore it is thought to be imperative to study the difference of the stress distribution occuring at the mandible according to the abutment form. The purpose of this study was to assess the loading distributing characteristics of three different abutments for GS II$^{(R)}$ implant fixture(Osstem, Korea) under vertical and inclined loading using finite element analysis. Three finite element models were designed according to three abutments; 2-piece Transfer$^{TM}$ abutment made of pure titanium(GST), 2-piece GoldCast$^{TM}$ abutment made of gold alloy(GSG), 3-piece Convertible$^{TM}$ abutment with external connection(GSC). This study simulated loads of 100N in a vertical direction on the central pit(load 1), on the buccal cusp tip(load 2) and $30^{\circ}$ inward inclined direction on the central pit(load 3), and on the buccal cusp tip(load 4). The following results were obtained. 1. Without regard to the loading condition, greater stress was concentrated at the cortical bone contacting the upper part of the implant fixture and lower stress was taken at the cancellous bone. 2. When off-axis loading was applied, high stress concentration observed in cervical area. 3. GSG showed even stress distribution in crown, abutment and fixture. GST showed high stress concentration in fixture and abutment screw. GSC showed high stress concentration in fixture and abutment. 4. Maximum von Mises stress in the surrounding bone had no difference among three abutment type. In GS II$^{(R)}$ conical implant system, different stress distribution pattern was showed according to the abutment type and the stress-induced pattern at the supporting bone according to the abutment type had no difference among them.

THREE DIMENSIONAL FINITE ELEMENT ANALYSIS OF INTERNALLY CONNECTED IMPLANT SYSTEMS (내부연결방식 임플랜트 시스템의 삼차원 유한요소법적 연구)

  • Kim Yu-Lee;Cho Hye-Won;Lee Jai-Bong
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.44 no.1
    • /
    • pp.85-102
    • /
    • 2006
  • Statement of problem: Currently, there are some 20 different geometric variations in implant/abutment interface available. The geometry is important because it is one of the primary determinants of joint strength, joint stability, locational and rotational stability. Purpose: As the effects of the various implant-abutment connections and the prosthesis height variation on stress distribution are not yet examined this study is to focus on the different types of implant-abutment connection and the prosthesis height using three dimensional finite element analysis. Material and method. The models were constructed with ITI, 3i TG, Bicon, Frialit-2 fixtures and solid abutment, TG post, Bicon post, EstheticBase abutment respectively. And the super structures were constructed as mandibular second premolar shapes with 8.5 mm, 11 mm, 13.5 mm of crown height. In each model, 244 N of vertical load and 244 N of $30^{\circ}$ oblique load were placed on the central pit of an occlusal surface. von Mises stresses were recorded and compared in the crowns, abutments, fixtures. Results: 1. Under the oblique loading, von Mises stresses were larger in the crown, abutment, fixture compared to the vertical loading condition. 2. The stresses were increased proportionally to the crown height under oblique loading but showed little differences with three different crown heights under vertical loading. 3. In the crown, the highest stress areas were loading points under vertical loading, and the finish lines under oblique loading. 4. Under the oblique loading, the higher stresses were located in the fixture/abutment interface of the Bicon and Frialit-2 systems compared to the ITI and TG systems. Conclusions: The stress distribution patterns of each implant-abutment system had difference among them and adequate crown height/implant ratio was important to reduce the stresses around the implants.

Study on the stress distribution depending on the bone type and implant abutment connection by finite element analysis (지대주 연결 형태와 골질에 따른 저작압이 임프란트 주위골내 응력분포에 미치는 영향)

  • Park, Hyun-Soo;Lim, Sung-Bin;Chung, Chin-Hyung;Hong, Ki-Seok
    • Journal of Periodontal and Implant Science
    • /
    • v.36 no.2
    • /
    • pp.531-554
    • /
    • 2006
  • Oral implants must fulfill certain criteria arising from special demands of function, which include biocompatibility, adequate mechanical strength, optimum soft and hard tissue integration, and transmission of functional forces to bone within physiological limits. And one of the critical elements influencing the long-term uncompromise functioning of oral implants is load distribution at the implant- bone interface, Factors that affect the load transfer at the bone-implant interface include the type of loading, material properties of the implant and prosthesis, implant geometry, surface structure, quality and quantity of the surrounding bone, and nature of the bone-implant interface. To understand the biomechanical behavior of dental implants, validation of stress and strain measurements is required. The finite element analysis (FEA) has been applied to the dental implant field to predict stress distribution patterns in the implant-bone interface by comparison of various implant designs. This method offers the advantage of solving complex structural problems by dividing them into smaller and simpler interrelated sections by using mathematical techniques. The purpose of this study was to evaluate the stresses induced around the implants in bone using FEA, A 3D FEA computer software (SOLIDWORKS 2004, DASSO SYSTEM, France) was used for the analysis of clinical simulations. Two types (external and internal) of implants of 4.1 mm diameter, 12.0 mm length were buried in 4 types of bone modeled. Vertical and oblique forces of lOON were applied on the center of the abutment, and the values of von Mises equivalent stress at the implant-bone interface were computed. The results showed that von Mises stresses at the marginal. bone were higher under oblique load than under vertical load, and the stresses were higher at the lingual marginal bone than at the buccal marginal bone under oblique load. Under vertical and oblique load, the stress in type I, II, III bone was found to be the highest at the marginal bone and the lowest at the bone around apical portions of implant. Higher stresses occurred at the top of the crestal region and lower stresses occurred near the tip of the implant with greater thickness of the cortical shell while high stresses surrounded the fixture apex for type N. The stresses in the crestal region were higher in Model 2 than in Model 1, the stresses near the tip of the implant were higher in Model 1 than Model 2, and Model 2 showed more effective stress distribution than Model.

Removal Torque Values of Retaining Screws Tightened to Implant-Supported Prosthesis with Different Connection Systems by Various Tightening Technique (다른 연결 시스템을 갖는 임플랜트 상부 구조물에서 조임술식에 따른 지대주 나사의 풀림 토크값에 대한 연구)

  • Kim, Dong-Wook;Choi, Yu-Sung;Jo, In-Ho
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.27 no.4
    • /
    • pp.343-358
    • /
    • 2011
  • As implant treatment has become popular, lots of different shapes and materials of the implant upper component have been supplied. And there are also diverse reports about failures including loosening of the abutment screw which is one of the most common reason. Purpose : The purpose of this study is to find out how different screw tightening orders and methods influence on screw loosening according to the different connection systems. The upper component was fabricated by casting method. After fabricating master models that are precisely attached to the upper component, 5 experimental models each for the external connection system and internal connection system were fabricated using splinting impression technique. First, to find out the influence of the screw tightening order, screws were tightened in 3 orders; 1-2-3-4, 2-3-1-4, 2-4-3-1. After tightening, removal torque values (RTV) of each group was measured. And also to find out the influence of screw tightening method, a model with 2-3-1-4 screw tightening order was tightened with 30 Ncm at one time(1-step method) and the RTV was compared with the same order group (2-3-1-4) in the 2 step method. In the external connection system, RTV appeared significantly lower in group 2-3-1-4 than group 2-4-3-1 (p<0.05). And also in the internal connection system, the RTV of group 2-3-1-4 appeared significantly lower than that of group 2-4-3-1 and 1-2-3-4 (p<0.05). When comparing the tightening number of the screw without considering the screw tightening order, the first tightened screw appeared significantly higher RTV than the second one in the external connection system (p<0.05), however there was no significant difference from the first tightened screw to the last tightened screw in the internal connection system. And there was no statistically significant difference between the two screw tightening methods in both internal and external connection system. In the comparison of external and internal connection system, each RTV appeared 16.27 Ncm and 14.25 Ncm and appeared as a statistically significant difference (p<0.05). There was a significant difference in RTV measured according to the screw tightening order. The lowest RTV appeared in the groups started tightening from the middle. There was also a significant difference in RTV between the two connection system groups. A further study is needed to find out the influence factors in RTV and also a study is required related to the load condition.