• Title/Summary/Keyword: Internal combustion engine

Search Result 462, Processing Time 0.031 seconds

Cycle-by-Cycle In-cylinder HC & NOx Formation Characteristics with Port Masking in CVVT Engine (포트 마스킹과 흡기 밸브 타이밍이 실린더 내부의 싸이클별 HC와 NOx 생성에 미치는 영향)

  • Jeon, Woo-Ju;Choi, Kwan-Hee;Myung, Cha-Lee;Park, Sim-Soo;Lee, Kyung-Hwan
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.3108-3113
    • /
    • 2008
  • This paper investigated the behaviors of combustion characteristics at part load condition with various intake charge motions induced by the port masking schemes in the CVVT (Continuously Variable valve Timing) engine. Time resolved in-cylinder and exhaust emissions were measured by the fast response HC and NOx analyzers to examine their formation mechanisms and behavior characteristics. As a result, in-cylinder HC decreased with the advanced intake valve timings but HC at the exhaust port increased due to the worse combustion stabilities. However HC reduction could be achieved by the application of the port maskings with a enhancement of the engine stability. NOx also decreased with early intake timings by internal EGR but increased with the charge motion controls which enhance the combustion behavior.

  • PDF

A Study on Emission Reductions of Diesel Engine Using Plasmatron Fuel Converter (플라즈마트론을 이용한 디젤 엔진의 매연저감에 관한 연구)

  • Ki, Ho-Beom;Kim, Bong-Soo;Kwak, Yong-Hwan;Kim, Woo-Hyung;Lim, Won-Kyung;Chae, Jae-Ou
    • 한국연소학회:학술대회논문집
    • /
    • 2006.10a
    • /
    • pp.104-109
    • /
    • 2006
  • Improvements in internal combustion engine and aftertreatment technologies are needed to meet future environmental quality goals. Plasmatron fuel converters provide a rapid response, compact means to transform a wide range of hydrocarbon fuels (including gasoline, natural gas and diesel fuel) into hydrogen-rich gas. Hydrogen-rich gas can be used as an additive to provide NOx reductions of more than 80% in diesel engine vehicles by enabling very lean operation or heavy exhaust engine recirculation. For diesel engines, use of compact plasmatron reformers to produce hydrogen-rich gas for the regeneration of NOx absorber/absorbers and particulate traps for diesel engine exhaust after-treatment could provide significant advantages. Recent tests of conversion of diesel fuel to hydrogen-rich gas using a low current plasmatron fuel converter with non-equilibrium plasma features are described.

  • PDF

A Study on Combustion Characteristics of Pre-mixed $CH_4$-air by Flame Trap (플레임트랩에 의한 메탄-공기 예혼합기의 연소특성에 관한 연구)

  • Kim, Deok-Ho;Lee, Jai-Hyo;Choi, Su-Jin;Cho, Gyu-Back;Jeong, Dong-Soo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.2
    • /
    • pp.22-28
    • /
    • 2005
  • Exhaust gas emissions from internal combustion engines are one of the major sources of air pollution. And, it is extremely difficult to increase gasoline engine efficiency and to reduce $NO_X$ and PM(particulate matter) simultaneously in diesel combustion. This paper offers some basic concepts to overcome the above problems. To solve the problems, a recommended technique is CAI(controlled auto-ignition) combustion. In this paper, a flame trap was used to simulate internal EGR(exhaust gas recirculation) effect. An experimental study was carried out to find combustion characteristics using homogeneous premixed gas mixture in the constant volume combustion chamber(CVCC). Flame propagation photos and pressure signals were acquired to verify the flame trap effect. The flame trap creates high speed burned gas jet. It achieves higher flame propagation speed and more stable combustion due to the effect of geometry and burned gas jet.

Basic Experiment of P8250 Educational Engine Performance (P8250 학습용 엔진성능의 기초 실험)

  • Lim, Chang-Su;Choi, Jun-Seop;Wang, So-Rang
    • 대한공업교육학회지
    • /
    • v.33 no.2
    • /
    • pp.218-231
    • /
    • 2008
  • The purpose of this study was made for the pre-teacher of university to enhance understanding for the concept of engine performance and to provide information regarding engine performance in the institute of teacher educator. This study was carried out through engine performance experiment with The Cussons Engine Test Bed P8250, internal combustion engine, in order to analyze data quantitatively, and apply and verify factors of controlling engine performance. The main results of this study are as follows: First, power and brake horsepower increased linearly, and torque over the mid-speed as engine rps(revolution per second) decreased. Second, the change of torque and specific fuel consumption were able to be verified and the concept of engine performance was able to be understood. Third, the experimental values of brake horsepower and torque on engine performance showed the same tendency as theoretical values. Fourth, air/fuel ratio increased proportionally as engine speed increased.

Prgress in MEMS Engine Development for MAV Applications (KAIST의 MAV용 MEMS 엔진 개발 현황)

  • Lee, Dae-Hoon;Park, Dae-Eun;Yoon, Eui-Sik;Kwon, Se-Jin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.6
    • /
    • pp.1-6
    • /
    • 2002
  • Micro engine that includes Micro scale combustor is fabricated. Design target was focused on the observation of combustion driven actuation in MEMS scale. Combustor design parameters are somewhat less than the size recommended by feasibility test. The engine structure is fabricated by isotropic etching of the photosensitive glass wafers. Electrode is formed by electroplating of the Nickel. Photosensitive glass can be etched isotropically with almost vertical angle. Bonding and assembly of structured photosensitive glass wafer from the engine. Combustor size was determined to be 1mn scale. Piston in cylinder moves by fuel injection and reaction. In firing test, adequate engine operation including ignition, flame propagation and piston motion was observed. Present study warrants further application research on MEMS scale internal combustion power units.

Numerical Analysis of Effect of Inhomogeneous Pre-mixture on Pressure Rise Rate in HCCI Engine by Using Multizone Chemical Kinetics (화학반응수치해석을 이용한 HCCI기관의 예혼합기의 성층화성이 연소시의 압력 상승률에 미치는 영향)

  • Lim, Ock-Taeck
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.5
    • /
    • pp.449-456
    • /
    • 2010
  • The HCCI engine is a prospective internal combustion engine with which high diesel-like efficiencies and very low NOx and particulate emissions can be achieved. However, several technical issues must be resolved before HCCI engines can be used for different applications. One of the issues concerning the HCCI engine is that the operating range of this engine is limited by the rapid pressure rise caused by the release of excessive heat. This heat release is because of the self-accelerated combustion reaction occurring in the engine and the resulting engine knock in the high-load region. The purpose of this study is to evaluate the role of thermal stratification and fuel stratification in reducing the pressure rise rate in an HCCI engine. The concentrations of NOx and CO in the exhaust gas are also evaluated to confirm combustion completeness and NOx emission. The computation is carried out with the help of a multizone code, by using the information on the detailed chemical kinetics and the effect of thermal and fuel stratification on the onset of ignition and rate of combustion. The engine is fueled with dimethyl ether (DME), which allows heat release to occur in two stages, as opposed to methane, which allows for heat release in a single stage.

Internal modifications to reduce pollutant emissions from marine engines. A numerical approach

  • Lamas, M.I.;Rodriguez, C.G.;Rodriguez, J.D.;Telmo, J.
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.5 no.4
    • /
    • pp.493-501
    • /
    • 2013
  • Taking into account the increasingly stringent legislation on emissions from marine engines, this work aims to analyze several internal engine modifications to reduce $NO_x$ (nitrogen oxides) and other pollutants. To this end, a numerical model was employed to simulate the operation cycle and characterize the exhaust gas composition. After a preliminary validation process was carried out using experimental data from a four-stroke, medium-speed marine engine, the numerical model was employed to study the influence of several internal modifications, such as water addition from 0 to 100% water to fuel ratios, exhaust gas recirculation from 0 to 100% EGR rates, modification of the overlap timing from 60 to $120^{\circ}$, modification of the intake valve closing from 510 to $570^{\circ}$, and modification of the cooling water temperature from 70 to $90^{\circ}C$. $NO_x$ was reduced by nearly 100%. As expected, it was found that, by lowering the combustion temperature, there is a notable reduction in $NO_x$, but an increase in CO (carbon monoxide), HC (hydrocarbons) and consumption.

The Evaluation of NOx Emission Factor from Large Combustion Facilities in Seoul (서울지역 대형연소시설에서의 질소산화물 배출계수 산정)

  • 조기찬;최종욱;박후경;유병태
    • Journal of environmental and Sanitary engineering
    • /
    • v.15 no.4
    • /
    • pp.78-83
    • /
    • 2000
  • The emission factor of nitrogen oxides(NOx) was evaluate to clarify the characteristics of NOx emitted from seven large combustion facilities in seoul area. The emission factors of NOx at A-1 and A-2 facilities of internal combustion engine were 66.957kgNOx/ton and 20.913kgNOx/ton, respectively. The emission factor of A-1 facility was higher than that of A-2 facility even same internal combustion engine, because A-1 facility adopted SCR(selective catalystic reactor) for reduction of NOx emission factor of A-2, A-4, and A-7 power generation boiler facilities were 4.300kgNOx/ton, 2.460kgNOx/ton and 1.796kgNOx/ton, respectively. The capacity of A-2 facility was about two times than that of A-4 and A-7. These emission factors were lower than those at facilities in other areas of korea, because of using low NOx burner of power generation boiler. The emission factors of NOx at A-3 and A-6 incinerator facilities were 0.147kgNOx/ton and 0.221kgNOx/ton which were lower than other facilities, respectively, because these facilities incinerate municipal solid waste of low heating value and uwe SCR for reducing NOx concentration.

  • PDF

Emissions and Combustion Characteristics of LPG HCCI Engine (LPG 예혼합 압축 착화 엔진의 배기가스 및 연소 특성)

  • Yeom, Ki-Tae;Jang, Jin-Young;Bae, Choong-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.4
    • /
    • pp.149-156
    • /
    • 2006
  • This paper investigates the steady state combustion characteristics of LPG homogeneous charge compression ignition(HCCI) engine with variable valve timing(VVT) and dimethyl ether(DME) direct injection, to find out the benefits in exhaust gas emissions. VVT is one of the attractive ways to control HCCI engine. Hot internal residual gas which is controlled by VVT device, makes fuel is evaporated easily, and ignition timing is advanced. Regular gasoline and liquefied petroleum gas(LPG) were used as main fuel and dimethyl ether(DME) was used as ignition promoter in this research. Operating range and exhaust emissions were compared LPG HCCI engine with gasoline HCCI engine. Operating range of LPG HCCI engine was wider than that of gasoline HCCI engine. The start of combustion was affected by the intake valve open(IVO) timing and the ${\lambda}TOTAL$ due to the latent heat of vaporization, not like gasoline HCCI engine. At rich operation conditions, the burn duration of the LPG HCCI engine was longer than that of the gasoline HCCI engine. CAD at 20% and 90% of the mass fraction burned were also more retarded than that of the gasoline HCCI engine. And carbon dioxide(CO2) emission of LPG HCCI engine was lower than that of gasoline HCCI engine. However, carbon oxide(CO) and hydro carbon(HC) emission of LPG HCCI engine were higher than that of gasoline HCCI engine.

A Numerical Study on the Characteristics of Tumble and Internal Flow According to Intake Port for Marine Engine (선박용 엔진의 흡기포트 형상에 따른 텀블 및 내부 유동 특성에 관한 수치적 연구)

  • Lee, Byoung-Hwa;Chang, Young-June;Jeon, Chung-Hwan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.4
    • /
    • pp.498-505
    • /
    • 2008
  • Many researches have been studied on in-cylinder flow as one of dominant effects for an engine combustion. The combustion phenomena of reciprocating engine is one of the most important processes affecting performance and emissions. One effective way to improve the engine combustion is to control the motion of the charge inside a cylinder by means of optimum induction system design. It is believed that the tumble and swirl motion generated during intake breaks down into small-scale turbulence in the compression stroke of the cycle. However, the exact nature of their relationship is not well known. To know this relationship definitely, this paper describes analytical results of the tumble motion, swirl motion, turbulence intensity, turbulence inside the cylinder of marine engine. 3-D computation has been performed by using STAR-CD solver and es-ice.