• Title/Summary/Keyword: Internal boundary

Search Result 651, Processing Time 0.04 seconds

A novel method for solving structural problems: Elastoplastic analysis of a pressurized thick heterogeneous sphere

  • Abbas Heydari
    • Advances in Computational Design
    • /
    • v.9 no.1
    • /
    • pp.39-52
    • /
    • 2024
  • If the governing differential equation arising from engineering problems is treated as an analytic, continuous and derivable function, it can be expanded by one point as a series of finite numbers. For the function to be zero for each value of its domain, the coefficients of each term of the same power must be zero. This results in a recursive relationship which, after applying the natural conditions or the boundary conditions, makes it possible to obtain the values of the derivatives of the function with acceptable accuracy. The elastoplastic analysis of an inhomogeneous thick sphere of metallic materials with linear variation of the modulus of elasticity, yield stress and Poisson's ratio as a function of radius subjected to internal pressure is presented. The Beltrami-Michell equation is established by combining equilibrium, compatibility and constitutive equations. Assuming axisymmetric conditions, the spherical coordinate parameters can be used as principal stress axes. Since there is no analytical solution, the natural boundary conditions are applied and the governing equations are solved using a proposed new method. The maximum effective stress of the von Mises yield criterion occurs at the inner surface; therefore, the negative sign of the linear yield stress gradation parameter should be considered to calculate the optimal yield pressure. The numerical examples are performed and the plots of the numerical results are presented. The validation of the numerical results is observed by modeling the elastoplastic heterogeneous thick sphere as a pressurized multilayer composite reservoir in Abaqus software. The subroutine USDFLD was additionally written to model the continuous gradation of the material.

Three-dimensional reconstruction of polycrystals using a series of EBSD maps obtained from Dual-beam experiments

  • Kim, MinJi;Son, Youngkyun;Lee, Myeongjin;Jeon, Youngju;Lee, Sukbin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.172-172
    • /
    • 2016
  • Dual-beam experiments (Focused ion beam - Orientation mapping microstructure, FIB-OIM) is a widely used experimental tool because this experiments tool available alternates between automated serial sectioning and EBSD with the help of dual beams. We investigated the reconstruction procedure for analysis tool which three-dimensional internal microstructure using Ni superalloy(IN100) and ZrO2. As a results, we observed annealing twin boundary each layer in Ni superalloy(IN100) and fairly isotropic internal microstructure in ZrO2 using marching cubes algorithm. According to these results, this procedure is reconstructed well and we gained ability to arrange the EBSD map and internal microstructure.

  • PDF

Internal Flow and Limiting Streamlines Observations of Contra-Rotating Axial Flow Pump at Partial Flow Rate

  • Watanabe, Satoshi;Momosaki, Shimpei;Usami, Satoshi;Furukawa, Akinori
    • International Journal of Fluid Machinery and Systems
    • /
    • v.4 no.2
    • /
    • pp.235-242
    • /
    • 2011
  • An application of contra-rotating rotors, in which a rear rotor is in tandem with a front one and these rotors rotate in the opposite direction each other, has been proposed against a demand for developing higher specific speed axial flow pump. One prototype rotors, which we have designed with a conventional method, has given the positive slope of head characteristic curve especially in the rear rotor. It is necessary to understand the internal flow behavior in the rear rotor to establish the design guideline for achieving higher and more reliable performance. In the present study, we carried out the experimental investigations of the internal flow field of the rear rotor, especially at the partial flow rate, by Laser Doppler Velocimetry (LDV) for the main flow and the limiting streamlines observation on rotor surfaces for the boundary layer flows.

An Experimental Study on the Influence of the Internal Cavity and Gap on the Bell Acoustics (내부 공동과 간극이 종 음향에 미치는 영향에 대한 실험적 연구)

  • Jeong, Won-Tae;Kang, Yeon-June;Kim, Seock-Hyun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.9
    • /
    • pp.822-827
    • /
    • 2010
  • In this study, it is experimentally investigated how bell acoustics are influenced by the internal cavity of the bell and the gap between the bell bottom and the floor. Acoustic transmission function and natural frequency of a test bell are measured and analysed. Experimental study is conducted to evaluated how the resonance effect influences the bell sound and how the bell sound is different according to the striking condition and the measurement direction. Acoustic resonance frequency of the cavity-gap system is predicted by boundary element analysis using SYSNOIS and the validity of the predicted result is verified by experiment. The result of the study could be applied to determine the optimal gap size which makes the bell sound strong and long.

Effect of Domain Switching on Cracking in Ferroelectric Ceramic Actuators (분역회전이 강유전체 세라믹 액추에이터 내의 균열발생에 미치는 영향)

  • Jeong Kyoung Moon;Kim Jae Yun;Beom Hyeon Gyu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.2
    • /
    • pp.113-119
    • /
    • 2005
  • A crack emanating from an internal electrode or a conducting damage path in ferroelectric ceramic actuators is analyzed. The boundary of the domain switching zone near the edge of the internal electrode in a ceramic multilayer actuator is determined based on the nonlinear electric theory. The stress intensity factor induced by a ferroelectric domain switching under small scale conditions is numerically obtained for flaws of various sizes near the electrode edge. It is found that stress intensity factor near the crack tip depends on the material property of the electrical nonlinearity.

Transmission Loss Estimation of Three Dimensional Silencers with Perforated Internal Structures Using Multi-domain BEM

  • Ju Hyeon-Don;Lee Shi-Bok
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.8
    • /
    • pp.1568-1575
    • /
    • 2005
  • The calculation of the transmission loss of the silencers with complicated internal structures by the conventional BEM combined with the transfer matrix method is incorrect at best or impossible for 3-dimensional silencers due to its inherent plane wave assumption. On this consideration, we propose an efficient practical means to formulate algebraic overall condensed acoustic equations for the whole acoustic structure, where particle velocities on the domain interface boundaries are unknowns, and the solutions are used later to compute the overall transfer matrix elements, based on the multi-domain BEM data. The transmission loss estimation by the proposed method is tested by comparison with the experimental one on an air suction silencer with perforated internal structures installed in air compressors. The method shows its viability by presenting the reasonably consistent anticipation of the experimental result.

THERMAL STRESSES IN A SEMI-INFINITE SOLID CYLINDER SUBJECTED TO INTERNAL HEAT GENERATION

  • DESHMUKH, KISHOR CHINTANAMRAO;QUAZI, YUSUF IQBAL
    • Communications of the Korean Mathematical Society
    • /
    • v.30 no.4
    • /
    • pp.505-513
    • /
    • 2015
  • The present paper deals with the determination of displacement and thermal stresses in a semi-infinite circular cylinder defined as $0{\leq}r{\leq}b$, $0{\leq}z<{\infty}$, due to internal heat generation within it. A circular cylinder is considered having arbitrary initial temperature and subjected to time dependent heat flux at the fixed circular boundary (r = b) whereas the zero temperature at the lower surface (z = 0) of the semi-infinite circular cylinder. The governing heat conduction equation has been solved by using integral transform method. The results are obtained in series form in terms of Bessel functions. The results for displacement and stresses have been computed numerically and illustrated graphically.

The Internal Structure of an Identification Function in Korean Lexical Pitch Accent in North Kyungsang Dialect

  • Kim, Jungsun
    • Phonetics and Speech Sciences
    • /
    • v.5 no.1
    • /
    • pp.91-98
    • /
    • 2013
  • This paper investigated Korean prosody as it relates to graded internal structure in an identification function. Within Korean prosody, variants regarded as dialectal variations can appear as different prosodic scales, which contain the range of within-category variations. The current experiment was intended to show how the prosodic scale corresponding to the range of within-category differences relates to f0 contours for speakers of two Korean dialects, North Kyungsang and South Cholla. In an identification task, participants responded by selecting an item from two answer choices. The probability of choosing the correct response from the two choices was computed by a logistic regression analysis using intercepts and slopes. That is, the correct response between two choices was used to show a linear line with an s-shape presentation. In this paper, to investigate the graded internal structure of labeling, 25%, 50%, and 75% of predicted probability were assessed. Listeners from North Kyungsang showed progressive variations, whereas listeners from South Cholla revealed random patterns in the internal structure of the identification function. In this paper, the results were plotted using scatterplot graphs, applying the range of within-category variation and predicted probability obtained from the logistic regression analyses. The scatterplot graphs showed the different degree of the responses for f0 scales (i.e., variations within categories). The results demonstrate that the gradient structures of native pitch accent users become more progressive in response to f0 scales.

Constitutive Analysis of the High-temperature Deformation Behavior of Two Phase Ti-6Al-4V Near-α Ti-6.85Al-1.6V and Single Phase-α Ti-7.0Al-1.5V Alloy (2상 Ti-6Al-4V 합금, 준단상 Ti-6.85Al-1.6V 및 단상 Ti-7.0Al-1.5V 합금의 고온 변형거동에 관한 연구)

  • Kim Jeoung Han;Yeom Jong Taek;Park Nho Kwang;Lee Chong Soo
    • Transactions of Materials Processing
    • /
    • v.14 no.8 s.80
    • /
    • pp.681-688
    • /
    • 2005
  • The high-temperature deformation mechanisms of a ${\alpha}+{\beta}$ titanium alloy (Ti-6Al-4V), near-a titanium alloy (Ti-6.85Al-1.6V) and a single-phase a titanium alloy (Ti-7.0Al-1.5V) were deduced within the framework of inelastic-deformation theory. For this purpose, load relaxation tests were conducted on three alloys at temperatures ranging from 750 to $950^{\circ}C$. The stress-versus-strain rate curves of both alloys were well fitted with inelastic-deformation equations based on grain matrix deformation and grain-boundary sliding. The constitutive analysis revealed that the grain-boundary sliding resistance is higher in the near-${\alpha}$ alloy than in the two-phase ${\alpha}+{\beta}$ alloy due to the difficulties in relaxing stress concentrations at the triple-junction region in the near-${\alpha}$ alloy. In addition, the internal-strength parameter (${\sigma}^*$) of the near-${\alpha}$ alloy was much higher than that of the ${\alpha}+{\beta}$ alloy, thus implying that dislocation emission/ slip transfer at ${\alpha}/{\alpha}$ boundaries is more difficult than at ${\alpha}/{\beta}$ boundaries.

The Study on Scattered Far-Field Analysis of Ultrasonic SH-Wave Using Boundary Element Method (경계요소법을 이용한 SH형 초음파 원거리 산란장 해석에 관한 연구)

  • Lee, Joon-Hyun;Lee, Seo-Il
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.19 no.5
    • /
    • pp.333-339
    • /
    • 1999
  • It is well recognized that ultrasonic technique is one of the most common and reliable nondestructive evaluation techniques for quantitative estimation of defects in structures. For the quantitative and accurate estimation of internal defects. the characteristics of scattered ultrasonic wavefields must be understood. In this study. the scattered near-field and far-field due to a circular cavity embedded in infinite media subjected to incident SH-waves were calculated by the boundary element method. The frequency response of the scattered ultrasonic far-field was transformed into the time-domain signal by obtaining its inverse Fourier transform. It was found that the amplitude of time-domain signal decreases and its time delay increases as the distance between the detecting point of ultrasonic scattered field and the center of internal cavity increases.

  • PDF