• 제목/요약/키워드: Internal Variable Theory

검색결과 41건 처리시간 0.021초

비탄성 변형이론을 이용한 $Fe_3$Al 금속간화합물의 소성변형 기구 고찰 (A Study of Plastic Deformation Mechanisms in $Fe_3$Al Intermetallics Alloys by Inelastic Deformation Theory)

  • 정호철
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1999년도 춘계학술대회논문집
    • /
    • pp.180-183
    • /
    • 1999
  • It is well known that Fe3Al intermetallic compound shows an anomalous peak of the yield strength at about 50$0^{\circ}C$ and then decrease at higher temperatures The dislocation structure was examined by transmission electron microscopy and high temperatures. The dislocation structure was examined by transmission electron microscopy and high temperature mechanical properties were examined by tensile and load relaxation tests. The flow stress curves obtained from load relaxation tests were then analyzed in terms of internal variable deformation theory. it was found that the flow curves consisted of three micro-deformation mechanisms -i. e inelastic deformation mode plastic deformation mode and dislocation creep deformation mode depending on both dislocation structure and deformation temperature. The flow curves could be well described by the constitutive equations of these three micro-deformation mechanisms based on the internal variable deformation theory.

  • PDF

비탄성 변형 이론을 바탕으로 한 Mg-Al 합금의 슬립기구 천이 현상 해석 (Effect of slip system transition on the deformation behavior of Mg-Al alloy: internal variable based approach)

  • 이현석;방원규;장영원
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2004년도 춘계학술대회 논문집
    • /
    • pp.186-189
    • /
    • 2004
  • Although magnesium has high potential for structural material due to the lightweight and high specific strength, the structural application has been limited by the low ductility at room temperature. The reason of the poor ductility is few activated slip systems of magnesium (HCP structure) during deformation. As temperature increases, however, additional non-basal slip systems are incorporated to exhibit higher ductility comparable to aluminum. In the present study, a series of tensile tests of Mg-Al alloy has been carried out to study deformation behavior with temperature variation. Analysis of load relaxation test results based on internal variable approach gave information about relationship between the micromechanical character and corresponding deformation behavior of magnesium. Especially, the material parameter, p representing dislocation permeability through barriers was altered from 0.1 to 0.15 as the non-basal slip systems were activated at high temperature.

  • PDF

비탄성 변형 이론을 바탕으로 한 Mg-Al 합금의 슬립기구 천이 현상 해석 (Effect of Slip System Transition on the Deformation Behavior of Mg-Al Alloy: Internal Variable Based Approach)

  • 이현석;장영원;방원규
    • 소성∙가공
    • /
    • 제13권6호
    • /
    • pp.535-539
    • /
    • 2004
  • Although magnesium has high potential for structural material due to the lightweight and high specific strength, the structural application has been limited by the low ductility at room temperature. The reason of the poor ductility is few activated slip systems of magnesium (HCP structure) during deformation. As temperature increases, however, additional non-basal slip systems are incorporated to exhibit higher ductility comparable to aluminum. In the present study, a series of tensile tests of Mg-Al alloy has been carried out to study deformation behavior with temperature variation. Analysis of load relaxation test results based on internal variable approach gave information about relationship between the micromechanical character and corresponding deformation behavior of magnesium. Especially, the material parameter, p representing dislocation permeability through barriers was altered from 0.1 to 0.15 as the non-basal slip systems were activated at high temperature.

분무 주조 과공정 Al-Si계 합금의 응력이완 및 Creep 천이 거동 (Load Relaxation and Creep Transition Behavior of a Spray Cast Hypereutectic Al-Si Based Alloy)

  • 김민수;방원규;박우진;장영원
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.176-179
    • /
    • 2005
  • Spray casting of hypereutectic Al-Si based alloy has been reported to provide distinct advantages over ingot metallurgy (IM) or rapid solidification/powder metallurgy (RS/PM) process in terms of microstructure refinement. Hypereutectic Al-Si based alloys have been regarded attractive for automotive and aerospace application, due to high specific strength, good wear resistance, low coefficient of thermal expansion, high thermal stability, and good creep resistance. In this study, hypereutectic Al-25Si-2.0Cu-1.0Mg alloy was prepared by OSPREY spray casting process. High temperature deformation behavior of the hypereutectic Al-Si based alloy has been investigated by applying the internal variable theory proposed by Chang et al. The change of strain rate sensitivity and Creep transition were analyzed by using the load relaxation test and constant creep test.

  • PDF

Integrated Thermochemical Approach to Collision-Induced Dissociation Process of Peptides

  • Shin, Seung Koo;Yoon, Hye-Joo
    • Mass Spectrometry Letters
    • /
    • 제12권4호
    • /
    • pp.131-136
    • /
    • 2021
  • Collision-induced dissociation of peptides involves a series of proton-transfer reactions in the activated peptide. To describe the kinetics of energy-variable dissociation, we considered the heat capacity of the peptide and the Marcus-theory-type proton-transfer rate. The peptide ion was activated to the high internal energy states by collision with a target gas in the collision cell. The mobile proton in the activated peptide then migrated from the most stable site to the amide oxygen and subsequently to the amide nitrogen (N-protonated) of the peptide bond to be broken. The N-protonated intermediate proceeded to the product-like complex that dissociated to products. Previous studies have suggested that the proton-transfer equilibria in the activated peptide affect the dissociation kinetics. To take the extent of collisional activation into account, we assumed a soft-sphere collision model, where the relative collision energy was fully available to the internal excitation of a collision complex. In addition, we employed a Marcus-theory-type rate equation to account for the proton-transfer equilibria. Herein, we present results from the integrated thermochemical approach using a tryptic peptide of ubiquitin.

Creep damage and life assessment of thick cylindrical pressure vessels with variable thickness made of 304L austenitic stainless steel

  • Kashkoli, Mosayeb Davoudi;Tahan, Khosro Naderan;Nejad, Mohammad Zamani
    • Steel and Composite Structures
    • /
    • 제32권6호
    • /
    • pp.701-715
    • /
    • 2019
  • Using first-order shear deformation theory (FSDT), a semi-analytical solution is employed to analyze creep damage and remaining life assessment of 304L austenitic stainless steel thick (304L ASS) cylindrical pressure vessels with variable thickness subjected to the temperature gradient and internal non-uniform pressure. Damages are obtained in thick cylinder using Robinson's linear life fraction damage rule, and time to rupture and remaining life assessment is determined by Larson-Miller Parameter (LMP). The thermo-elastic creep response of the material is described by Norton's law. The novelty of the present work is that it seeks to investigate creep damage and life assessment of the vessels with variable thickness made of 304L ASS using LMP based on first-order shear deformation theory. A numerical solution using finite element method (FEM) is also presented and good agreement is found. It is shown that temperature gradient and non-uniform pressure have significant influences on the creep damages and remaining life of the vessel.

분무 주조 과공정 Al-Si 계 합금의 응력이완 및 Creep 천이 거동 (Load Relaxation and Creep Transition Behavior of a Spray Casted Hypereutectic Al-Si Alloy)

  • 김민수;방원규;박우진;장영원
    • 소성∙가공
    • /
    • 제14권6호
    • /
    • pp.502-508
    • /
    • 2005
  • Hypereutectic Al-Si alloys have been regarded attractive for automotive and aerospace application, due to high specific strength, good wear resistance, high thermal stability, low thermal expansion coefficient and good creep resistance. Spray casting of hypereutectic Al-Si alloy has been reported to provide distinct advantages over ingot metallurgy (IM) or rapid solidification/powder metallurgy (RS/PM) process in terms of microstructure refinement. In this study, hypereutectic Al-25Si-2.0Cu-1.0Mg alloy was prepared by OSPREY spray casting process. The change of strain rate sensitivity and Creep transition were analyzed by using the load relaxation test and constant creep test. High temperature deformation behavior of the hypereutectic Al-Si alloy has been investigated by applying the internal variable theory proposed by Chang et al. Especially, the creep resistance of spray casted hypereutectic Al-Si alloy can be enhanced considerably by the accumulation of prestrain.

분말야금 Al-Li 합금의 초소성 변형 특성 (Superplastic Deformation Characteristics in Powder Metallurgy Al-Li Aluminum Alloy)

  • 장영원
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1999년도 춘계학술대회논문집
    • /
    • pp.129-130
    • /
    • 1999
  • The superplastic deformation characteristics is powder metallurgy(PM) Al-Li alloy has been studied within the framework of a recently proposed internal variable theory of superplasticity(SSP). The flow curves were obtained by performing a series of load relaxation tests at the temperature range from 45$0^{\circ}C$ to 52$0^{\circ}C$ It has been found that the overall flow curves were separated into the grain boundary sliding(GBS) and the accommodating dislocation glide processes/ The tensile curves were also obtained to clarify the superplastic deformation bahavior of PM Al-Li alloy. The microstructural features of PM AL-Li alloy have been examined through the transmission electron microscopy.

  • PDF

Thermoelastic analysis of rotating FGM thick-walled cylindrical pressure vessels under bi-directional thermal loading using disk-form multilayer

  • Fatemeh Ramezani;Mohammad Zamani Nejad
    • Steel and Composite Structures
    • /
    • 제51권2호
    • /
    • pp.139-151
    • /
    • 2024
  • In this research, a semi-analytical solution is presented for computing mechanical displacements and thermal stresses in rotating thick cylindrical pressure vessels made of functionally graded material (FGM). The modulus of elasticity, linear thermal expansion coefficient, and density of the cylinder are assumed to change along the axial direction as a power-law function. It is also assumed that Poisson's ratio and thermal conductivity are constant. This cylinder was subjected to non-uniform internal pressure and thermal loading. Thermal loading varies in two directions. The governing equations are derived by the first-order shear deformation theory (FSDT). Using the multilayer method, a functionally graded (FG) cylinder with variable thickness is divided into n homogenous disks, and n sets of differential equations are obtained. Applying the boundary conditions and continuity conditions between the layers, the solution of this set of equations is obtained. To the best of the researchers' knowledge, in the literature, there is no study carried out bi-directional thermoelastic analysis of clamped-clamped rotating FGM thick-walled cylindrical pressure vessels under variable pressure in the longitudinal direction.

초소성 7075알루미늄 합금의 변형특성 평가 (Characterization of Superplastic Deformation Behaviors of 7075 Al Alloy)

  • 권용남;장영원
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1998년도 춘계학술대회논문집
    • /
    • pp.65-71
    • /
    • 1998
  • The superplastic deformation behaviors of 7075Al alloy have been characterized experimentally and analyzed by the internal variable theory of inelastic deformation. A simple rheological model including the grain boundary sliding has been used to interpret the superplastic deformation behaviors. A series of load relaxation and tensile tests have been carried out for 7075Al alloy at the various temperatures. The superplastic deformation of 7075Al alloy is confirmed to consist of the grain boundary sliding and accommodating grain matrix defprmation.

  • PDF