• Title/Summary/Keyword: Internal Flows

Search Result 268, Processing Time 0.034 seconds

External and Internal Glucose Mass Transfers in Succinic Acid Fermentation with Stirred Bed of Immobilized Actinobacillus succinogenes under Substrate and Product Inhibitions

  • Galaction, Anca-Irina;Rotaru, Roxana;Kloetzer, Lenuta;Vlysidis, Anestis;Webb, Colin;Turnea, Marius;Cascaval, Dan
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.12
    • /
    • pp.1257-1263
    • /
    • 2011
  • This paper is dedicated to the study on the external and internal mass transfers of glucose for succinic acid fermentation under substrate and product inhibitions using a bioreactor with stirred bed of immobilized Actinobacillus succinogenes cells. By means of the substrate mass balance for a single particle of biocatalysts, considering the kinetic model adapted for both inhibitory effects, specific mathematical models were developed for describing the profiles of the substrate concentration in the outer and inner regions of biocatalysts and for estimating the substrate mass flows in the liquid boundary layer surrounding the particle and inside the particle. The values of the mass flows were significantly influenced by the internal diffusion velocity and rate of the biochemical reaction of substrate consumption. These cumulated influences led to the appearance of a biological inactive region near the particle center, its magnitude varying from 0 to 5.3% of the overall volume of particles.

Internal Flow Measurement of Very Low Specific Speed Semi-Open Impeller by PIV (PIV를 이용한 극저비속도 세미오픈임펠러의 내부유동 계측)

  • Nishino Koichi;Lee Young-Ho;Choi Young-Do
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.7 s.238
    • /
    • pp.773-783
    • /
    • 2005
  • Internal flow measurement of very low specific-speed semi-open impellers has been carried out by PIV in order to understand better the internal flow patterns that are responsible fur the unique performance of these centrifugal pumps operating in the range of very low specific speed. Two types of impellers, one equipped with six radial blades (Impeller A) and the other with four conventional backward-swept blades (Impeller B), are tested in a centrifugal pump operating at a non-dimensional specific-speed of $n_s=0.24$. Complex flow patterns captured by PIV are discussed in conjunction with the overall pump performance measured separately. It is revealed that Impeller A achieves higher effective head than Impeller B even though the flow patterns in Impeller A are more complex, exhibiting secondary flows and reverse flows in the impeller passage. It is shown that both the localized strong outward flow at the pressure side of each blade outlet and the strong outward through-flow along the suction side of each blade are responsible for the better head performance of Impeller A.

Unsteady Flows Arising in a Mixed-Flow Vaneless Diffuser System

  • Tsurusaki, Hiromu
    • International Journal of Fluid Machinery and Systems
    • /
    • v.1 no.1
    • /
    • pp.92-100
    • /
    • 2008
  • The main objective of this study was to clarify the origin of the unsteady flows arising in a mixed-flow vaneless diffuser system and also the effects of physical components of the system. The testing equipment consists of a straight tube, a swirl generator, and a mixed-flow vaneless diffuser. Pressure fluctuations of the flow through the tube and diffuser were measured by using a semiconductor-type pressure transducer and analyzed by an FFT analyzer. In the experiment, the velocity ratio (axial velocity/peripheral velocity) of the internal flow, and the geometric parameters of the diffuser were varied. Two kinds of unsteady flows were measured according to the combination of the components, and the origin of each unsteady flow was clarified. The fundamental frequencies of unsteady flows arose were examined by two-dimensional small perturbation analysis.

An Experimental Study on Droplet Size Characteristics of Liquid Jets in Subsonic Crossflow (아음속 수직분사제트에서 액적크기 특성에 대한 실험적 연구)

  • Kim, Min-Ki;Song, Jin-Kwan;Kim, Jin-Ki;Hwang, Yong-Seok;Yoon, Young-Bin
    • Journal of ILASS-Korea
    • /
    • v.12 no.2
    • /
    • pp.115-122
    • /
    • 2007
  • The spray characteristics and drop size measurements have been experimentally studied in liquid jets injected into subsonic crossflow. With water as fuel injection velocity, injection angle and atomize. internal flows were varied to provide of jet operation conditions. The injector internal flow was classified as three modes such as a non-cavitation flow, cavitation, and hydraulic flip flows. Pulsed Shadowgraph Photography measurement was used to determine the spatial distribution of the spray droplet diameter in a subsonic crossflow of air. And this study also obtains the SMD (Sauter Mean Diameters) distribution by using Planar Liquid Laser Induced Fluorescence technique. The objectives of this research are get a droplet distributions and drop size measurements of each condition and compare with the other flow effects. As the result, This research has been showned that droplet size were spatially dependent on air-stream velocity, fuel injection velocity, injection angle effects, and normalized distance from the injector exit length(x/d, y/d). There are also different droplet size characteristics between cavitation, hydraulic flip and the non-cavitation flows.

  • PDF

Direct Numerical Simulation of Strongly-Heated Internal Gas Flows with Large Variations of Fluid Properties (유체의 물성치변화를 고려한 수직원형관내 고온기체유동에 관한 직접수치모사)

  • Bae, Joong-Hun;Yoo, Jung-Yul;Choi, Hae-Cheon;You, Jong-Woo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.11
    • /
    • pp.1289-1301
    • /
    • 2004
  • Direct numerical simulation (DNS) of strongly-heated air flows moving upward in a vertical tube has been conducted to investigate the effect of gas property variations on turbulence modification. Three heating conditions(q$_1$$^{+}$=0.0045, 0.0035 and 0.0018) are selected to reflect the experiment of Shehata and McEligot (1998) at the inlet bulk Reynolds numbers of 4300 and 6000. At these conditions, the flow inside the heated tube remains turbululent or undergoes a transition to subturbulent or laminarizing flow. Consequently, a significant impairment of heat transfer occurs due to the reduction of flow turbulence. The predictions of integral parameters and mean profiles such as velocity and temperature distributions are in excellent agreement with the experiment. The computed turbulence data indicate that a reduction of flow turbulence occurs mainly due to strong flow acceleration effects for strongly-heated internal gas flows. Thus, buoyancy influences are secondary but not negligible especially for turbulent flow at low heating condition. Digital flow visualization also shows that vortical structures rapidly decay as the heating increases.s.

A Preconditioning Method for Two-Phase Flows with Cavitation

  • Shin B.R.;Yamamoto S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.181-182
    • /
    • 2003
  • A preconditioned numerical method for gas-liquid to-phase flow is applied to solve cavitating flow. The present method employs a density based finite-difference method of dual time-stepping integration procedure and Roe's flux difference splitting approximation with MUSCL-TVD scheme. A homogeneous equilibrium cavitation model is used. The method permits simple treatment of the whole gas-liquid two-phase flow field including wave propagation, large density changes and incompressible flow characteristics at low Mach number. By this method, two-dimensional internal flows through a venturi tuve and decelerating cascades are computed and discussed.

  • PDF

Validation of the Two-fluid Model for Vertical Bubbly Flows (수직 기포류 수치해석을 위한 2유체 모델 검증)

  • Kim, Myung Ho;Kim, Byoung Jae
    • Journal of the Korean Society of Visualization
    • /
    • v.16 no.1
    • /
    • pp.37-41
    • /
    • 2018
  • The two-fluid model is widely used for practical applications involving multi-phase flows in chemical reactor, nuclear reactor, desalination systems, boilers, and internal combustion engine. There are several modeling terms in the two-fluid model, which must be determined properly. This study suggests the best models for turbulent vertical bubbly flow.

Application of Preconditioning Method to Cavitating Flow Computation

  • Shin, Byeong-Rog
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1903-1908
    • /
    • 2004
  • A preconditioned numerical method for gas-liquid two-phase flows is applied to solve cavitating flow. The present method employs a finite-difference dual time-stepping integration procedure and the MUSCLTVD scheme. A homogeneous equilibrium cavitation model is used. The present density-based numerical method permits simple treatment of the whole gas-liquid two-phase flow field, including wave propagation, large density changes and incompressible flow characteristics at low Mach number. Some internal flows such as convergent-divergent nozzles are computed using this method. Comparisons of predicted and experimental results are provided and discussed.

  • PDF

INTERNAL FLOWS IN AIR PUMP OF ROBOT CLEANER (로봇청소기용 에어 펌프 내부 유동 해석)

  • Kim, J.W.;Seok, I.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.227-231
    • /
    • 2009
  • Traditional vacuum cleaner adoptsa highly rotating centrifugal impeller for generating suction region at lower pressure. The rotational speed is very high at 35,000 to 40,000 rpm and accessory structure such as a circular brush at the base plate of the cleaning devices is equipped for gathering dusts. Highly rotating impeller is effective for low pressure generation but causes noise problems. Recently, the unwanted noise is removed by installation of air-pump, instead of a centrifugal impeller, and the internal flows of the modified system are estimated in numerical and experimental approach, respectively.

  • PDF

Influence of Impeller Outlet Angles in Pump Flow Patterns and Characteristics (임펠러 출구각이 펌프 내부유동 및 특성에 미치는 영향)

  • Lee, Sun-ki
    • The KSFM Journal of Fluid Machinery
    • /
    • v.3 no.1 s.6
    • /
    • pp.28-36
    • /
    • 2000
  • For the improvement of the pump characteristics in the partial capacity range, it must be verified that the influence of the impeller design factor on the internal flows and the influence of the impeller internal flows on the pump characteristics. In this paper, in order to understand the influence of outlet angles on flow conditions and characteristics of a mixed flow pump, experiments were carried out for four kinds of impeller, which have the same inlet angle distributions and meridional section shapes. Results shown that separation and stall in the partial capacity range were enlarged by the outlet angles. The relationship between the separation and the stall at the impeller and the discharge flow conditions were clarified.

  • PDF