• Title/Summary/Keyword: Internal Flow Rate

Search Result 652, Processing Time 0.031 seconds

Numerical Analysis of the Gas Flow Distribution Characteristics in the Anode Flow Channel of Molten Carbonate Fuel Cell (MCFC) (용융탄산염 연료전지 Anode 유로 채널에서의 가스 유동 분포에 관한 수치해석적 연구)

  • Cho, Jun-Hyun;Ha, Tae-Hun;Kim, Han-Sang;Min, Kyoung-Doug;Park, Jong-Hoon;Chang, In-Gab;Lee, Tae-Won
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.11
    • /
    • pp.834-839
    • /
    • 2009
  • A three-dimensional computational fluid dynamics (CFD) analysis is performed to investigate flow characteristics in the anode channels and manifold of the internal reforming type molten carbonate fuel cell (MCFC). Considering the computational difficulties associated with the size and geometric complexity of the MCFC system, the polyhedral meshes that can reduce mesh connectivity problems at the intersection of the channel and the manifold are adopted and chemical reactions inside the MCFC system are not included. Through this study, the gas flow rate uniformity of the anode channels is mainly analyzed to provide basic insights into improved design parameters for anode flow channel design. Results indicate that the uniformity in flow-rate is in the range of ${\pm}$1% between the anode channels. Also, the mal-distributed inlet flow-rate conditions and the change in the size of the manifold depth have no significant effect on the flow-rate uniformity of the anode channels.

Numerical Analysis on the Effect of Flow Rate Variation in Double-Suction Centrifugal Pump (양흡입 원심펌프에 있어서 유량변화의 영향에 관한 수치해석적 연구)

  • An, Young-Joon;Shin, Byeong-Rog
    • The KSFM Journal of Fluid Machinery
    • /
    • v.13 no.6
    • /
    • pp.51-56
    • /
    • 2010
  • A numerical simulation is carried out to investigate the effect of flow rate variation and performance characteristics of double-suction centrifugal pump. Two types of pump which have different impeller inlet breadth and curvature of the shroud line consist of six blades impeller and shroud ring. Finite-volume method with structured mesh and $k-\omega$ Shear Stress Transport turbulence model was used to guaranty more accurate prediction of turbulent flow in the pump impeller. Total head, power and overall efficiency were calculated to obtain performance characteristics of two types of pump according to the variation of flow rate. From the results, impeller having smooth curve along the shroud line obtained good performance. The lower flow rate, the more circulation region, flow unsteadiness and complicate flow pattern are observed. Complicated internal flow phenomena through impellers such as flow separation, pressure loss, flow unsteadiness and performance are investigated and discussed.

Numerical analysis of the gas flow distribution characteristics in the anode flow channel of the molten carbonate fuel cell (MCFC) (용융탄산염 연료전지 anode 유로 채널에서의 가스 유동 분포에 관한 수치해석적 연구)

  • Cho, Jun-Hyun;Ha, Tae-Hun;Kim, Han-Sang;Min, Kyoung-Doug;Park, Jong-Hoon;Chang, In-Gab;Lee, Tae-Won
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.3120-3124
    • /
    • 2008
  • A three-dimensional computational fluid dynamics (CFD) analysis is performed to investigate flow characteristics in the anode channels and manifold of the internal reforming type molten carbonate fuel cell (MCFC). Considering the computational difficulties associated with the size and geometric complexity of the MCFC system, the polyhedral meshes that can reduce mesh connectivity problems at the intersection of the channel and the manifold are adopted and chemical reactions inside the MCFC system are not included. Through this study, the gas flow rate uniformity of the anode channels is mainly analyzed to provide basic insights into improved design parameters for anode flow channel design. Results indicate that the uniformity in flow-rate is in the range of ${\pm}1%$ between the anode channels. Also, the mal-distributed inlet flow-rate conditions and the change in the size of the manifold depth have no significant effect on the flow-rate uniformity of the anode channels.

  • PDF

Flow Measurement and Control by Time-Based Method

  • Chang, Young-Chul;Kim, No-Hyu;Kim, Yong-Cheol
    • Proceedings of the Korean Society Of Semiconductor Equipment Technology
    • /
    • 2002.11a
    • /
    • pp.115-116
    • /
    • 2002
  • This study aimed to investigate flow measurement by using a 'bucket and stop-watch' method of flow measurement. Most flow measurement systems measure pressure or other fluid properties to infer flow rate, though time is a variable which can be easily and very accurately measured. The main principle behind the method was to fill up a reservoir until a set pressure had been reached. This reservoir would then be emptied and the cycle would repeat itself. The prototype was designed to control flow rate using the method. It made use of computer control with an analogue digital converter and fast acting solenoid valves which controlled the flow into a reservoir. Reservoirs were available with internal diameter of 1mm up to 5.5mm to cope with a range of flow rate.

  • PDF

Runner Design and Internal Flow Characteristics Analysis for an Ns=200 Francis Hydro Turbine Model

  • Hwang, Yeong-Cheol;Chen, Zhenmu;Choi, Young-Do;Lee, Young-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.8
    • /
    • pp.698-703
    • /
    • 2016
  • Francis hydro turbines have been most widely used throughout the world because of their wide range of head and flow rate applications. In most applications, they are used for high heads and flow rates. Currently, Korea is developing technology for Francis hydro turbine design and manufacture. In order to understand the internal details of Francis hydro turbines further, a new Francis turbine model runner is designed and model internal flow characteristics are investigated. The specific speed of the Francis hydro turbine model runner is $Ns=200m-kW-min^{-1}$. The runner blade is designed successfully according to the port area and one-dimensional loss analysis. The best efficiency point of the Francis hydro turbine model achieves 90% at the design condition. CFD analysis yields a hill chart of the Francis hydro turbine model for use in predicting performance.

A Study on Flow Rate Estimation Using Pressure Fluctuation Signals in Pipe (배관내 압력변동 신호를 이용한 유량 추정 방법 연구)

  • Jeong Han Lee;Dae Sic Jang;Jin Ho Park
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.19 no.2
    • /
    • pp.155-162
    • /
    • 2023
  • In nuclear power plants, the flow rate information is a major indicator of the performance of rotating equipment such as pumps, and is a very important one required for facility operation and maintenance. To measure a flow rate, various types of methods have been developed and used. Among them, the differential pressure type using orifice and the direct doppler type using ultrasonic waves are the most commonly used. However, these flow rate measurement methods have limitations in installation, conditions and status of the measuring part, etc. To solve this problem, we have studied a new technique for measuring flow rate from scratch. In this paper, we have devised a technique to estimate the flow rate using an average moving velocity of large-scale eddy in turbulence that occurs in the piping flow field. The velocity of the large-scale eddy can be measured using the pressure fluctuation signals on the inner surface of the pipe. To estimate the flow rate, at first a cross-correlation function is applied to the two pressure fluctuation signals located at different positions in the down stream for calculating the time delay between the moving eddies. In order to validate the proposed flow rate estimation method, CFD analyses for the internal turbulence flow in pipe are conducted with a fixed flow condition, where the pressure fluctuation signals on the pipe inner surface are simulated. And then the average flow velocity of the large scale eddy is to be estimated. The estimated flow velocity is turned out to be similar to the fixed (known) flow rate.

Annual Change of Peak Expiratory Flow Rate in Asthma and COPD (천식환자 및 만성 폐쇄성 폐질환환자군에서 연간 최대 호기유속의 변화량)

  • Hong, Sung-Chul;Lee, Cho-I;Han, Jang-Soo;Kim, Won-Dong;Lee, Kye-Young;Kim, Sun-Jong;Kim, Hee-Joung;Ha, Kyoung-Won;Chon, Gyu-Rak;Yoo, Kwang-Ha
    • Tuberculosis and Respiratory Diseases
    • /
    • v.72 no.1
    • /
    • pp.24-29
    • /
    • 2012
  • Background: Measurement of peak expiratory flow rate (PEFR) in a follow-up examination for a chronic airway disease is useful because it has the advantages of being a simple measurement and can be repeated during examination. The aim of this study was to examine the annual decrease of PEFR in asthma and chronic obstructive pulmonary disease (COPD) patients and to confirm the factors which influence this decrease. Methods: From May, 2003 to September, 2010, the annual decrease of PEFR was obtained from asthma and COPD patients attending an outpatient pulmonary clinic. PEFR was measured using a Mini-Wright peak flow meter (Clement Clarke International Ltd. UK), and we conducted an analysis of factors that influence the change of PEFR and its average values. Results: The results showed an annual decrease of $1.70{\pm}12.86$ L/min the asthmatic patients and an annual decrease of $10.3{\pm}7.32$ L/min in the COPD patients. Age and $FEV_1$ were the predictive factors influencing change in asthma, and $FEV_1$ and smoking were the predictive factors influencing change in COPD. Conclusion: We confirmed the annual decreasing PEFR in patients with chronic airway disease and identified factors that work in conjunction with $FEV_1$ to influence the change.

Measurement of suction air amount at reciprocating engine under stationary and transient operation

  • Kubota, Yuzuru;Hayashi, Shigenobu;Kajitani, Shuichi;Sawa, Norihiro
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10b
    • /
    • pp.1037-1042
    • /
    • 1990
  • The air-fuel ratio of an internal combustion engine must be controlled with accuracy for the improvements of exhaust emission and fuel consumption. Therefore, it is necessary to measure the exact instantaneous amounts of fuel and suction air, so we carried out the experiments for measuring the air flow velocity in a suction pipe of an internal combustion engine using three types of instantaneous air flowmeter. The results obtained can be summarized as follows: (1) The laminar-flow type flowmeter is able to measure both the average and the instantaneous flow rate, but it is necessary to rectify the pulsating air flow in the suction pipe. (2) The a spark-discharge type flow velocity meter is able to measure the instantaneous air velocity, but it is necessary to choose the suitable electrode form and the spark character. (3) The tandem-type hot-wire flow velocity meter indicates the instantaneous flow velocity and its flow direction.

  • PDF

Study on the Optimum Design of High Pressure Common-rail DME Injector Nozzle with Consideration of Cavitation (공동현상을 고려한 커먼레일용 고압 DME 인젝터 노즐의 최적 설계 연구)

  • Jeong, Soo-Jin;Park, Jung-Kwon;Lee, Sang-In
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.1
    • /
    • pp.99-106
    • /
    • 2013
  • DME (Di-Methyl Ether) is synthetic product that is produced through dehydration of methanol or a direct synthesis from syngas. And it is able to save fossil fuel and reduce pollutants of emission such as PM and $CO_2$. In spite of its advantages it is difficult to design DME fuelled engine system because DME fuel may cause to severely generate cavitation and corrosion in fuel delivery system due to physical properties of DME. Therefore, in this study three-dimensional internal flow characteristics with consideration of cavitation were predicted in the DME injector using diesel and DME fuel. Moving grid technique was employed to describe needle motion and 1-D hydraulic simulation of injector was also simulated to obtain transient needle motion profiles. The results of simulation show that cavitations was generated at the inlet of nozzle near high velocity region both diesel and DME. And mass flow rate of DME is reduced by 4.73% compared to that of diesel at maximum valve lift because cavitation region of DME is much more larger. To increase flow rate of DME injector, internal flow simulation has been conducted to investigate the nozzle hole inner R-cut effect. The flow rates of diesel and DME increase as R-cut increases, and flow coefficient of DME fuel injector was increased by 6.3% on average compared with diesel fuelled injector. Finally, optimum shape of DME injector nozzle is suggested through the comparison of flow coefficient with variation of nozzle hole inner R-cut.

Aerodynamic Effects of Gun Gas on the Aircraft's Armament System (항공기 무장시스템 Gun Gas 공력특성에 관한 연구)

  • Choi, Hyoung Jun;Kim, Seung Han
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.5
    • /
    • pp.623-629
    • /
    • 2020
  • This study examined the airflow field around a gun port on the flight condition of gunfire to verify the aircraft performance and safety effects and gun gas rate, path according to the options of diverter configuration. The gun port diverter not only effectively lowered the heat generated by gunfire but also effectively discharged the gun gas upwards. The path of gun gas can be changed according to its configuration. According to the optional configuration of the rear-gun-port diverter, the flow rate, path, and pressure of the gun gas were analyzed during gunfire. An analysis of the internal velocity distribution and the temperature change of the gun port revealed a rapid decrease in flow rate through the rear diverter according to the option configuration. The forward flow rate showed a similar tendency with little change. This ensures that the gun gas generated during gunfire has a sufficient flow distance from the aircraft surface, regardless of the rear gun port diverter's optional configuration. The flow stagnation of gun gas according to the option configuration of diverter had a great influence on the internal temperature rise of a gun port.