• Title/Summary/Keyword: Internal Flow Noise

Search Result 109, Processing Time 0.025 seconds

A Study of Flow Induced Noise for Multilayered Cylinder due to Turbulent Boundary Layer (난류경계층에 의한 다층재질 원통형 실린더의 유체소음 해석 연구)

  • 신구균;홍진숙;이헌곤
    • Journal of KSNVE
    • /
    • v.6 no.5
    • /
    • pp.671-677
    • /
    • 1996
  • This paper presents the analytical method for predicting turbulence- induced noise in the multilayered cylinder composed of an outer hose, an inner fluid and an internal core. It is assumed that an infinite axisymmetric cylinder is located horizontally in water with free stream velocity and the turbulent boundary layer (TBL) surrounding the outer hose is fully developed and homogeneous. The transfer function at the core surface due to the propagation of the pressure fluctuation within the TBL is formulated using the linearized Navier-Stockes equation for solid and fluid. In the estimation of the energy spectrum of wall pressure fluctuation, the empirical formula proposed by Strawderman based on the Corcos model is used. A general algorithm for the calculation of the pressure level at the surface of a core, that is, turbulence- induced noise, is presented. Through the detailed numerical simulation, it is found that the major noise mechanism is the propagation of the bulge wave along hose.

  • PDF

Vibration Power Flow Analysis of Coupled co-planar Plate Structures (동일 평면상에서 연성된 평판구조물 진동의 파워흐름해석)

  • 박도현;홍석윤;길현권
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1998.04a
    • /
    • pp.311-318
    • /
    • 1998
  • In this paper, the power flow analysis(PFA) method is applied to the prediction of the vibrational energy density and intensity of coupled co-planar plates. To cover the energy transmission and reflection at the joint of the plates, the wave transmission approach is introduced with the assumption that all the incident waves are normal to the joint. By changing the frequency ranges and internal loss factors, we have obtained the PFA results, and compared them with the analytical exact solutions.

  • PDF

Development of Visualization Technique for Analysis of Internal Flow for Cross-flow Fan (횡류팬 내부 유동 분석을 위한 가시화 기법 개발)

  • Lee, A-Mi;Han, Kyu-Il;Joo, Jae-Man;Na, Seon-Uk;Kim, Dong-Won;Ko, Han-Seo
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.515-516
    • /
    • 2006
  • Internal and inlet flows of a cross-flow fan have been visualized using a particle image velocimetry(PIV) to analyze a relationship with a performance of a room air conditioner(RAC). A test model which has a geometric similarity with the real RAC has been manufactured for the experiment and the flow characteristics have been analyzed with various flow rates and inlet grill angles for the cross-flow fan. The experimental results using the PIV technique have been compared with the existing numerical results. Also, a location and movement of an eccentric vortex which can affect the performance and noise of the RAC has been investigated by the PIV with various flow rates and inlet grill angles.

  • PDF

A Study on the Frequency Analyzing of Leak Evaluation m Valve for Power Plant Using AE (AE법에 의한 발전용 밸브누설평가를 위한 주파수분석 연구)

  • LEE SANG-GUK
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.360-364
    • /
    • 2004
  • The objective of this study is to estimate the feasibility of acoustic emission method Jar the internal leak from the valves in nuclear power plants. The acoustic emission method was applied to the valves at the site, and the background noise was measured for the abnormal plant condition. From the comparison of background noise data with the experimental results as to relation between leak flow and acoustic signal, the minimum leak flow rates that am be detected by acoustic signal was suggested. When the background noise level are higher than the acoustic signal, the method described below was considered that the analysis the remainder among the background noise frequency spectrum and the acoustic signal spectrum.

  • PDF

Development of internal inflow/outflow steady mean flow boundary condition using Perfectly Matched Layer for the prediction of turbulence-cascade interaction noise (난류-캐스케이드 상호작용 소음 예측을 위한 Perfectly Matched Layer 을 이용한 내부 입/출구 정상유동 경계조건의 개발)

  • Kim, Dae-Hwan;Cheong, Cheol-Ung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.04a
    • /
    • pp.521-526
    • /
    • 2012
  • It is essential for the accurate time-domain prediction of broadband noise due to turbulence-cascade interaction to develop inflow/outflow boundary conditions to satisfy the following three requirements: to maintain the back ground mean flow, to nonreflect the outgoing disturbances and to generate the specified input gust. The preceding study(1) showed that Perfectly Matched Layer (PML) boundary condition was successfully applied to absorb the outgoing disturbances and to generate the specified gust in the time-domain computations of broadband noise due to interaction of incident gust with a cascade of flat-plates. In present study, PML boundary condition is extended in order to predict steady mean flow that is needed for the computation of noise due to interaction of incident gust with a cascade of airfoils. PML boundary condition is originally designed to absorb flow disturbances superimposed on the steady meanflow in the buffer zone. However, the steady meanflow must be computed before PML boundary condition is applied on the flow computation. In the present paper, PML equations are extended by introducing source term to maintain desired mean flow conditions. The extended boundary condition is applied to the benchmark problem where the meanflow around a cascade of airfoils is predicted. These illustrative computations reveal that the extended PML equations can effectively provide and maintain the target meanflow.

  • PDF

Development of Internal Inflow/outflow Steady Mean Flow Boundary Condition Using Perfectly Matched Layer for the Prediction of Turbulence-cascade Interaction Noise (난류-캐스케이드 상호작용 소음 예측을 위한 Perfectly Matched Layer을 이용한 내부 입/출구 정상유동 경계조건의 개발)

  • Kim, Dae-Hwan;Cheong, Cheol-Ung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.7
    • /
    • pp.685-691
    • /
    • 2012
  • It is essential for the accurate time-domain prediction of broadband noise due to turbulence-cascade interaction to develop inflow/outflow boundary conditions to satisfy the following three requirements: to maintain the back ground mean flow, to nonreflect the outgoing disturbances and to generate the specified input gust. The preceding study showed that perfectly matched layer(PML) boundary condition was successfully applied to absorb the outgoing disturbances and to generate the specified gust in the time-domain computations of broadband noise due to interaction of incident gust with a cascade of flat-plates. In present study, PML boundary condition is extended in order to predict steady mean flow that is needed for the computation of noise due to interaction of incident gust with a cascade of airfoils. PML boundary condition is originally designed to absorb flow disturbances superimposed on the steady meanflow in the buffer zone. However, the steady meanflow must be computed before PML boundary condition is applied on the flow computation. In the present paper, PML equations are extended by introducing source term to maintain desired mean flow conditions. The extended boundary condition is applied to the benchmark problem where the meanflow around a cascade of airfoils is predicted. These illustrative computations reveal that the extended PML equations can effectively provide and maintain the target meanflow.

Vibration Characteristics of Steam Generator U-tubes with Defect (결함을 가진 증기발생기 U-튜브의 진동특성)

  • 조종철;정명조;김웅식;김효정;김태형
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.5
    • /
    • pp.400-408
    • /
    • 2003
  • This paper investigates the vibration characteristics of steam generator (SG) U-tubes with defect. The operating SG shell-side flow field conditions for determining the fluidelastic instability parameters such as added mass are obtained from three-dimensional SG flow calculation. Modal analyses are performed for the U-tubes either with axial or circumferential flaw with different sizes. Special emphases are on the effects of flaw orientation and size on the modal and instability characteristics of tubes, which are expressed in terms of the natural frequency, corresponding mode shape and stability ratio. Also, addressed is the effect of the internal pressure on the vibration characteristics of the tube.

DESIGN FOR AERODYNAMIC NOISE REDUCTION OF RAILWAY TRACTION MOTOR USING LBM (격자볼츠만기법을 이용한 전동차용 견인전동기 공력소음 저감 설계)

  • Kim, J.H.;Ki, H.C.;Byun, S.J.;Rho, J.H.
    • Journal of computational fluids engineering
    • /
    • v.22 no.1
    • /
    • pp.103-109
    • /
    • 2017
  • The aerodynamic noise reduction of railway traction motor is required to satisfy new enhanced Korean noise regulations for a train. This paper is the study result on a noise reduction of a railway traction motor using Lattice Boltzmann Method(LBM). To verify the reliability of numerical analysis, the noise performance of the base model evaluated using LBM, and calculated result was compared with the experimental data. In addition, main noise sources were selected to design parameters through analyzing the flow field of the base model. Based on the noise sources analysis result, a design improvement model of traction motor for this study was derived to reduce the noise. The performance of a design improvement model was evaluated by applying a validated numerical scheme. As a result, it was confirmed that the noise was reduced due to the suppression of the internal turbulent flow components.

Examination on High Vibration and Branch Vent Pipe's Failure of Complex Piping System Suppling Condensate-Water in Power Site (발전소 복수 공급 배관계의 고진동과 분기 배기배관의 절손 규명)

  • Kim, Yeon-Whan
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2010.10a
    • /
    • pp.380-384
    • /
    • 2010
  • A disturbance flow at piping bands and discontinuous regions such as a valve, a header has a intense broadband internal pressure field and a sound field which are propagated through the piping system The fields becomes the source of a vibration of this piping system. Intense broadband disturbance flow at a discontinuous region such as elbows, valves or headers generates an acoustical pulsation. The pulsation becomes the source of structural vibration at the piping system. If it coincides with the natural frequency of the pipe system, excessive vibration results. High-level vibration due to the pressure pulsation affects the reliability of the plant piping system. This paper discusses the high vibration and the branch vent pipe's failure of condensate-water supply piping system due to the effect of acoustical pulsations by flow turbulence from the flow control valves of globe type in a power site.

  • PDF

Development of a Load Measurement System for Vehicles using Tire Pressure System Technology (타이어 공기압 시스템 기술을 사용한 차량의 적재중량 측정 시스템 개발)

  • Park, Jae-Hyun;Lee, Seung-Ho
    • Journal of IKEEE
    • /
    • v.24 no.1
    • /
    • pp.33-39
    • /
    • 2020
  • In this paper, we propose the design technique of the vehicle's load weight measuring system using tire pressure, which is one of the physical elements of tires. The proposed technique consists of four processes: noise correction by load and vibration, gas flow correction, data mixer and weight conversion. Noise correction by load and vibration eliminates noise that increases the tire's internal pressure due to external shocks and vibrations produced by the vehicle while it is in motion. In the gas flow correction process, the noise of the internal pressure of the tire is increased due to the temperature rise of the ground with respect to the data obtained through the noise correction process due to the load and vibration. In the data mixer process, the load and pressure on the tolerances the empty, median and the full load are classified according to the change in pressure of the tire that is delivered perpendicular to the tire in the event of cargo. In the weight conversion process, weight is expressed by weight through weight conversion algorithms using noise correction results by load and vibration and gas flow correction. The weight conversion algorithm calculates the weight conversion factor, which is the slope of the linear function with respect to the load and pressure change, and converts the weight. In order to evaluate the accuracy of the loading weight measurement system of the vehicle using the tire pneumatic system technique proposed in this paper, we propose the design technique of the vehicle's load weight measuring system using tire pressure, which is one of the physical elements of tires.. Noise correction results by load and vibration and gas flow data correction results showed reliable results. In addition, repeated weight precision test showed better weight accuracy than the standard value of 90% of domestic companies.