• 제목/요약/키워드: Internal Flow In Nozzle

검색결과 174건 처리시간 0.025초

저점성 SWNT 분산액 도포용 슬릿 노즐 설계를 위한 유동해석 (A STUDY ON FLOW IN A SLIT NOZZLE FOR DISPENSING A LOW-VISCOSITY SOLUTION OF SINGLE-WALLED CARBON NANOTUBES)

  • 손병철;곽호상;이상현
    • 한국전산유체공학회지
    • /
    • 제14권1호
    • /
    • pp.78-85
    • /
    • 2009
  • A combined theoretical and numerical study is conducted to design a slit nozzle for large-area liquid coating. The objectives are to guarantee the uniformity in the injected flow and to provide the capability of explicit control of flow rate. The woking fluid is a dilute aqueous solution containing single-walled carbon nanotubes and its low viscosity and the presence of dispersed materials pose technical hurdles. A theoretical analysis leads to a guideline for the geometric design of a slit nozzle. The CFD-based numerical experiment is employed as a verification tool. A new flow passage unit, connected to the nozzle chamber, is proposed to permit the control of flow rate by using the commodity pressurizer. The numerical results confirm the feasibility of this idea. The optimal geometry of internal structure of the nozzle has been searched for numerically and the related issues are discussed.

Flow Field Analysis inside Intake Nozzles of a Household Vacuum Cleaner

  • Daichin Daichin;Lee Sang Joon
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2002년도 학술대회지
    • /
    • pp.733-736
    • /
    • 2002
  • The inside configuration of intake nozzle of vacuum cleaner greatly affects the dust-collection efficiency and acoustic-noise effect generated from flow separation Interaction between high-speed flow and internal structure. In order to improve the performance of the vacuum cleaner, flow fields inside the intake nozzles were investigated using flow visualization and FIV (Particle Image Vetocimetry) technique. The measurement to aerodynamic power, suction efficiency and noise level were also carried out. Valuable information was obtained from the experiments, revealing how to modify the intake nozzle. In this paper, the results of visualization, velocity distribution of flow fields, aerodynamic power, suction efficiency and noise level are discussed.

  • PDF

내삽노즐 고체로켓모터의 공기 유동모사시험을 통한 롤토크 발생유동 가시화 (Visualization of Roll Torque Generating Flows in a SRM Submerged-Nozzle by Cold Air-flow Test)

  • 김도헌;이인철;이열;구자예;강문중;김윤곤
    • 한국추진공학회지
    • /
    • 제15권2호
    • /
    • pp.29-35
    • /
    • 2011
  • 고체로켓모터 추진제 그레인의 핀-슬롯 표면에서의 연소로 인해 생성된 고온, 고압의 연소가스는 그레인 핀-슬롯 및 내삽노즐을 통해 외부로 방출되면서 형성되는 유동은 매우 복잡하고 다양한 형태를 가진다. 핀-슬롯형 그레인 및 내삽노즐을 가지는 고체로켓모터의 2D, 3D 스케일모델에 대한 공기유동 모사시험을 수행하였으며, 롤토크 발생 등과 같은 내부유동발생 메커니즘을 규명할 수 있는 효과적인 연기-유동장 가시화 기법의 적용방법에 대한 검토가 이루어 졌다. 다양한 광원조사기법 및 촬영장치 방향을 이용하여, 축류 실험모델 노즐 선단부에서의 비대칭 와류튜브에 의한 선회류를 가시화하였다.

축소노즐에서 발생하는 기체유동의 복합 초킹현상에 관한 연구 (A Study of the Compound Choking Phenomenon of Gas Flow in a Converging Nozzle)

  • 이준희;우선훈;김희동
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2002년도 학술대회지
    • /
    • pp.147-150
    • /
    • 2002
  • In general, a single gas flow through a converging nozzle is choked when the pressure communications between the downstream and upstream flowfields are broken by the sonic condition of Mach number, M=1. A similar phenomenon may occur In two streams of different stagnation properties flowing side by side in a converging nozzle. In this case, the limiting condition of M=1 for flow choking is no longer applied to such a compound compressible flow. The compound choking phenomenon can be explained by means of a compound sound wave at the nozzle exit. In order to detail the flow characteristics involved in such a compound choking of the two streams, the two-dimensional, compressible, Wavier-Stokes equations have been solved using a fully implicit finite volume method and compared with the results of the one-dimensional theoretical analysis. The computational and theoretical results show that the compound sound wave can reasonably explain the compound choking phenomenon of the two streams in the convergent flow channel.

  • PDF

전자동 자반건조기 제작에 이용할 Water Jet의 유동해석 모델 (Development of a Model for Fluid Analysis of Water Jet Using Automatic Javan(Salted-dry Seaweeds) Dryer Machine)

  • 김일수;박창언;정영재;손준식;남기우
    • 한국생산제조학회지
    • /
    • 제7권5호
    • /
    • pp.53-58
    • /
    • 1998
  • This paper concentrates on the development of a computational design program to determine nozzle size in water jet, combing the numerical optimization technique with the flow analysis code. To achieve the above objective, a two-dimensional model was developed for investigating the fluid flow in water jet and calculating the velocity and pressure distributions. The mathematical formulation as a standard ${k}-\varepsilon$ model was solved employing a general thermo fluid-mechanics computer program, PHOENICS code, which is based on the Semi-Implicit Method Pressure Linked Equations(SIMPLE) algorithm. The developed code was applied to water jet design to determine the nozzle size, and investigated the effect of the change of nozzle location. Calculated results showed that the flow pattern is not changed as the change of nozzle location.

  • PDF

대향류형 보텍스 튜브의 노즐형상 변화011 따른 튜브 내부의 온도분포에 관한 실험적 연구 (An Experimental Study on the Characteristics of Temperature Distribution in Internal Space of a Tube for the Formal Change of Counterflow Type Vortex Tube)

  • 황승식
    • 한국자동차공학회논문집
    • /
    • 제10권4호
    • /
    • pp.69-76
    • /
    • 2002
  • The aim of this study is to provide fundamental informations that make it possible to use a cool stream and a hot stream simultaneously. We changed the pressure of compressed air that flows into a tube, the inner diameter of orifice that a cold stream exits, and the mass flow rate ratio. And in each case, we measured the temperature of a cold stream and a hot stream in each exit of a tube. Also we measured the axial and the radial temperature distribution in internal spare of a tube. From the study, fellowing conclusive remarks 7an be made. First, As the number of nozzles increase, separation point move into the hot exit. Second, When we use guide vane type nozzle, the axial temperature distribution constant over the 0.75 of air mass flow rate radio. Third, When we use Spiral type nozzle, axial and radial temperature distribution in the inner space is higher than another nozzle. Fourth, Axial and radial temperature distribution in the inner space vortex-tube is determined by separation point. And separation point is moved by changing of air mass flow rate ratio. At last, A heating apparatus is possible far vortex-tube to use.

고체로켓 모사장치 내삽노즐 주위의 와류튜브 가시화 (Visualization of Vortex Tube near Submerged Nozzle in Simulator of Solid Rocket Motor)

  • 김도헌;신봉기;손민;구자예;강문중;장홍빈
    • 한국가시화정보학회지
    • /
    • 제11권2호
    • /
    • pp.34-40
    • /
    • 2013
  • A flow visualization near submerged nozzle of solid rocket motor was conducted by experiments. A numerical simulation was also performed to reveal detailed phenomena. Radial cold flow simulating hot gas was introduced by a porous grain model which was manufactured by perforated steel plates. The grain model was mounted in high-pressure chamber which has quartz glass at the top of the grain model. From the high-speed images, a rotating vortex was observed and the two type of counter-rotating momentums were generated in numerical results. The rotating momentum was generated at the fin-slot grain because of unbalance between high-velocity flow from slots and low-velocity flow from fin-bases. As a result, roll torques can be produced by the rotating vortex tube.

오리피스형 분사노즐에서 작동유체의 온도변화에 따른 K-factor에 관한 연구 (Study on K-factor for temperature variation of working fluid in spray nozzle with orifice)

  • 배강열;정희택;김찬희;김형범
    • 동력기계공학회지
    • /
    • 제12권3호
    • /
    • pp.12-18
    • /
    • 2008
  • In the present study, the numerical simulation has been performed to investigate K-factor for temperature variation of working fluid in spray nozzle with orifice. The commercial CFD software, Fluent with the proper modeling was applied for analyzing the internal of the spray nozzle. Numerical result for K-factor at $20^{\circ}C$ agrees with the experimental result that it applied n=0.5 within about 7% error. The pressure drop inside nozzle is showed 20% passing swirler, 70% in the region between the outlet of swirler and the orifice and 10% at the outlet of orifice. As the operating pressure is increased, K-factor is decreased by effect of flow resistance at it's inlet before pass swirler. The temperature increase of working fluid reduced the flow rate according to reducing of density, and average 1.23% decrease is showed in the present research.

  • PDF

노즐형상변화에 따른 횡류수차의 압력과 속도 분포 (Pressure and Velocity Distributions of Cross-flow Hydroturbine by Nozzle Shape)

  • 임재익;최영도;임우섭;김유택;이영호
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.2833-2838
    • /
    • 2007
  • Recently, small hydropower attracts attention because of its clean, renewable and abundant energy resources to develop. However, suitable turbine type is not determined yet in the range of small hydropower and it is necessary to study for the effective turbine type. Moreover, relatively high manufacturing cost by the complex structure of the turbine is the highest barrier for developing the small hydropower turbine. Therefore, a cross-flow turbine is adopted because of its simple structure and high possibility of applying to small hydropower. The purpose of this study is to examine the optimum configuration of nozzle shape to further optimize the cross-flow hydraulic turbine structure and to improve the performance. The results show that pressure on the runner blade in Stage 1 and velocity at nozzle outlet have close relation to the turbine performance.

  • PDF

Urea-SCR 단홀 Injector 노즐형상 변화에 따른 비정상유동특성의 해석적 연구 (Analytical Study on Unsteady Flow Characteristics of Urea-SCR Single Hole Injector depend on Nozzle Shape Change)

  • 황준환;박성영
    • 한국분무공학회지
    • /
    • 제24권3호
    • /
    • pp.105-113
    • /
    • 2019
  • In this paper, a study of Urea-SCR System for Dosing Injector for responding to enhanced environmental regulations has been conducted. There is a limit to the experimental approach due to the structural characteristics of the injector. In order to overcome this problem, The analysis was performed assuming unsteady turbulent flow through computational fluid analysis and the internal flow characteristics of the injector were analyzed. By changing the nozzle shape of the injector, the performance factors of the swirl injector by shape were selected and compared. The design parameters were modified by changing the diameter of the nozzle at a constant ratio compared to the base model. Swirl coefficient, outlet mass flow, and sac volume were selected as performance parameters of the injector. The Conv. model to which the taper was applied showed the dominance in mass flow rate, discharge coefficient and swirl because of the smooth fluid flow by shape. Swirl coefficient, outlet mass flow, and sac volume were selected as performance parameters of the injector. As a result of the comparison coefficient derivation with those performance parameters for comparing the performance of the model-specific injector, the Conv-140 model with the nozzle diameter expanded by 140% showed the best value of the comparison coefficient.