• Title/Summary/Keyword: Internal Diffusion

Search Result 307, Processing Time 0.025 seconds

A Study on 3-Dimensional Advection-Diffusion Model Operating Density Current Generator in Agriculture Lake (물순환장치 가동에 따른 농업용저수지의 3차원 이송확산모의에 관한 연구)

  • An, Jae-Soon;Lee, Young-Shin;Oh, Dae-Min
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.7
    • /
    • pp.3275-3284
    • /
    • 2012
  • This study analyzed a 3D hydrodynamic advection diffusion using the EFDC model (Environmental Fluid Dynamics Code) in the agriculture lake to prevent stratification when we install a water circulator. EFDC model was predicted the range of the water circulator and various operational parameters ware derived for minimize the impact of the internal lake. Through EFDC simulation, water circulation is started overall circulation after 30days and a lake overall circulation showed that it was possible operated the water circulator after about 100days. Also, advection diffusion concentration was low in a lake when water circulator operate intermittent condition than continuous condition. And the entire circulation was stable in this condition. The S/B (Surface/Bottom) ratio can reduce the impact of lake as the surface water mixing a lot of. When the same condition (S/B ratio(3:1)), Case 8 (50days operation: 50days stop) of condition were able to minimize the impact of lake.

스테인레스강 Overlay 용접부의 Disbonding에 관한 연구 1

  • 이영호;윤의박
    • Journal of Welding and Joining
    • /
    • v.1 no.2
    • /
    • pp.45-52
    • /
    • 1983
  • Many pressure vessels for the hot H$\sub$2//H$\sub$2/S service are made of 2+1/4Cr-1Mo steel with austenitic stainless steel overlay to combat agressive corrosion due to hydrogen sulfide. Hydrogen dissolves in to materials during operation, and sometimes gives rise to unfore-seeable damages. Appropriate precautions must, therefore, be taken to avoid the hydrogen induced damages in the design, fabrication and operation stage of such reactor vessels. Recently, hydrogeninduced cracking (or Disbonding) was found at the interface between base metal and stainless weld overlay of a desulfurizing reactor. Since the stainless steel overlay weld metal is subjected to thermal and internal-pressure loads in reactor operation, it is desirable for the overlay weld metal to have high strength and ductility from the stand point of structural safety. In section III of ASME Boiler and Pressure Vessel Code, Post-Weld Heat Treatment(PWHT) of more than one hour per inch at over 1100.deg. F(593.deg. C) is required for the weld joints of low alloy pressure vessel steels. This heat treatment to relieve stresses in the welded joint during construction of the pressure vessel is considered to cause sensitization of the overlay weld metal. The present study was carried out to make clear the diffusion of carbon migration by PWHT in dissimilar metal welded joint. The main conclusion reached from this study are as follows: 1) The theoretical analysis for diffusion of carbon in stainless steel overlay weld metal does not agree with Fick's 2nd law but the general law of molecular diffusion phenomenon by thermodynamic chemical potential. 2) In the stainless steel overlay welded joint, the PWHT at 720.deg. C for 10 hours causes a diffusion of carbon atoms from ferritic steel into austenitic steel according to the theoretical analysis for carbon migration and its experiment. 3) In case of PWHT at 720.deg. C for 10 hours, the micro-hardness of stainless steel weld metal in bonded zone increase very highly in the carburized layer with remarkable hardening than that of weld metal.

  • PDF

Evaluation of the Degradation of a 1300℃-class Gas Turbine Blade by a Coating Analysis (1300℃급 가스터빈 1단 블레이드의 코팅분석을 이용한 열화평가)

  • Song, Tae Hoon;Chang, Sung Yong;Kim, Beom Soo;Chang, Jung Chel
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.10
    • /
    • pp.901-906
    • /
    • 2010
  • The first stage blade of a gas turbine was operated under a severe environment which included both $1300^{\circ}C$ hot gas and thermal stress. To obtain high efficiency, a thermal barrier coating (TBC) and an internal cooling system were used to increase the firing temperature. The TBC consists of multi-layer coatings of a ceramic outer layer (top coating) and a metallic inner layer (bond coat) between the ceramic and the substrate. The top and bond coating layer respectively act as a thermal barrier against hot gas and a buffer against the thermal stress caused by the difference in the thermal expansion coefficient between the ceramic and the substrate. Particularly, the bondcoating layer improves the resistance against oxidation and corrosion. An inter-diffusion layer is generated between the bond coat and the substrate due to the exposure at a high temperature and the diffusion phenomenon. A thickness measurement result showed that the bond coat of the suction side was thicker than that of the pressure side. The thickest inter-diffusion zone was noted at SS1 (Suction Side point 1). A chemical composition analysis of the bond coat showed aluminum depletion around the inter-diffusion layer. In this study, we evaluated the properties of the bond coat and the degradation of the coating layer used on a $1300^{\circ}C$-class gas turbine blade. Moreover, the operation temperature of the blade was estimated using the Arrhenius equation and this was compared with the result of a thermal analysis.

Evaluation of Surface Emission and Internal Movement of Water in Japanese Larch Lumber (낙엽송재 내 수분의 내부이동 및 표면방사 평가)

  • Han, Yeongjung;Eom, Changdeuk;Kim, Se Jong;Kang, Wook;Park, Joo Saeng;Park, Moon Jae;Yeo, Hwanmyeong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.35 no.4
    • /
    • pp.1-8
    • /
    • 2007
  • Japanese larch specimens with dimension of 2.5 (radial direction) ${\times}$ 2.5 (tangential direction) ${\times}$ 2.5 cm (longitudinal direction) were prepared to determine 3 different directional internal moisture movement coefficients and surface emission coefficients along the radial-, the tangential-, and the tangential-direction. 4 sides of each cubic specimen were wrapped with paraffin tape and rubber tape, leaving open the 2 opposite surfaces of interest, to provide one dimensional moisture movement during drying. The coefficients were determined at three different temperatures, 70, 50 and $30^{\circ}C$ and at two different relative humidities, 30 and 60%. Internal moisture movement coefficients inclusive of flow of free water and diffusion of bound water and water vapor were increased in the high temperature condition. The internal moisture movement coefficient in the longitudinal direction was about six times of those in transverse directions with radial value being 20% greater than the tangential. Surface emission coefficients were increased with temperature and decreased with surface moisture content. Using this results, moisture content (MC) profile and quantities of moisture evaporating in Japanese larch lumber could be predicted in dynamic drying situations.

Evaluation of Fundamental Properties and Chloride Penetration Resistance of Concrete using Superabsorbent Polymers (고 흡수성 폴리머를 혼입한 콘크리트의 기초 물성 및 염화물 침투 저항성 평가)

  • Lee, Chan-Kyu;Kim, Il-Sun;Choi, So-Yeong;Yang, Eun-Ik
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.2
    • /
    • pp.50-59
    • /
    • 2020
  • Superabsorbent Polymer (SAP) expands inside concrete by absorbing water and contracts as it discharges water. Through this process, concrete can achieve the internal curing effect, but the space occupied by the expanded SAP remains as a void. In this study, the effects of SAP internal curing and voids were evaluated by evaluating the fundamental properties and chloride penetration resistance of SAP mixed concrete. Also, to evaluate the internal curing effect by SAP, the tests were carried out under water and sealed curing conditions, respectively. From the result, the compressive strength of water curing did not differ significantly according to the mixing ratio of SAP. In the case of sealed curing, however, the compressive strength tended to increase as the mixing ratio of SAP increased. The internal curing effect of sealed curing was considered to have influenced the increase in compressive strength. In the case of the chloride diffusion coefficient, the diffusion coefficient tended to decrease as the mixing ratio of SAP increased. In particular, as the sealed curing is applied, the chloride penetration resistance is further improved due to internal curing effect. If the curing conditions are different, it is considered inappropriate to estimate the chloride penetration resistance by the surface electrical resistivity.

Effect of Hydrogen(H2) Addition on Flame Shape and Combustion Products in Mixed Coflow Diffusion Flames of Methane(CH4), Ethane(C2H6) and Propane(C3H8) (동축류 메탄(CH4), 에탄(C2H6), 프로판(C3H8) 혼합 확산화염내의 수소(H2) 첨가가 화염 형상 및 연소 생성물에 미치는 영향)

  • Park, Ho-Yong;Yoon, Sung-Hwan;Rho, Beom-Seok;Lee, Won-Ju;Choi, Jae-Hyuk
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.6
    • /
    • pp.780-787
    • /
    • 2019
  • As a carbon-free, green growth alternative, internal and external interest in hydrogen energy and technology is growing. Hydrogen was added to co-axial methane, methane-propane, and methane-propane-ethane diffusion flames, which are the main ingredients of LNG, to evaluate its effect on flame formation and combustion products. The variation in combustion products produced by adding hydrogen gradually to diffusion pyrolysis at room temperature and normal pressure conditions was observed experimentally by using a gas analyzer, and the shape of diffusion pyrolysis was observed step by step using a digital camera. The experimental results showed that the production volume of nitrogen oxides tended to increase and became close to linear as hydrogen was added to the diffusion pyrotechnic. This is because the relatively high temperature of heat insulation and fast combustion speed of hydrogen facilitated the production of thermal NOx. On the other hand, CO2 production tended to decrease as hydrogen was added to reduce the overall carbon ratio contained in the mixed diffusion flame of methane, methane-propane, and methane-ethane-propane. This means that the mixed fuel use of LNG-hydrogen in ships may potentially reduce emissions of CO2, a greenhouse gas.

The added carbon effect on residual stress in ion-nitriding (ION질화에 있어 첨가 탄소량이 잔류응력에 미치는 영향)

  • 김희송;강명순
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.4 no.2
    • /
    • pp.35-46
    • /
    • 1982
  • This paper deals with residual stress characteristics of ion-nitrided metal which is primarilly concerned with the effects of added carbon content in gas atmosphere. A small optimal amount of carbon content in gas atmosphere increase compound layer thickness, as well as to increase diffusion layer thickness and hardness. The residual stress and deflection of the specimens was measured in various elevated temperature at the surface of ion-nitrided metal and the internal stress distribution was calculated. It is found that compressive residual stress at the compound layer is largest at the compound layer, and decreases as the depth from the surface increases.

  • PDF

Derivation of Current-Voltage Equation for OLED using Device Simulation

  • Lee, Sang-Gun;Hattori, Reiji
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.1212-1215
    • /
    • 2009
  • The theoretical equations for J-V characteristics in an OLED was derived according to the internal carrier emission equation based on a diffusion model at Schottky barrier contact and the mobility equation based on the Pool-Frenkel model. The J-V characteristics of OLED are presented using a behavioral model for analog systems (Verilog-A language), and the accuracy of this model was verified by comparing with the device simulation results.

  • PDF

Numerical modeling for pressure uniformity improvement of a large area sputtering system by change of gas distribution configuration (대면적 스퍼터링 장치에서 Gas 분배 구조 변화에 따른 압력 균일도 개선 모델링)

  • Kim, Yeong-Uk;Yang, Won-Gyun;Gu, Jeong-Hun
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.175-176
    • /
    • 2007
  • 대면적 플라즈마 스퍼터링 시스템에서 가스 분배 구조의 변화가 시스템의 압력 균일도에 미치는 영향을 3차원 수치 모델을 통하여 연구하였으며 2 line parallel internal antenna의 경우에 대해서 플라즈마 균일도를 drift diffusion approximation을 이용하여 계산 하였다.

  • PDF

Superconducting properties of internal tin processed $Nb_3Sn$ superconducting wires (내부확산법으로 제조한 $Nb_3Sn$ 초전도 선재의 초전도 특성)

  • Ha, Dong-Woo;Oh, Sang-Soo;Ha, Hong-Soo;Lee, Nam-Jin;Ryu, Kang-Sik
    • Proceedings of the KIEE Conference
    • /
    • 1999.07d
    • /
    • pp.1556-1558
    • /
    • 1999
  • $Nb_3Sn$ superconducting wires were fabricated in order to investigate the effect of pre-heat treatment for internal tin process. 2 types of Sn reservoir were fabricated. One was arranged one large Sn reservoir in the center of wire, the other arranged several Sn reservoirs inthe wire. Diffusion of Sn is better in the strand divided Sn equally than in the strand had one large Sn reservoir during pre heat-treatment. Critical current was better in the wires divided Sn reservoirs uniformly after whole heat treatment.

  • PDF