• Title/Summary/Keyword: Internal Defect

Search Result 441, Processing Time 0.024 seconds

Transmesenteric Hernia (경장간막 탈장)

  • Kim, Seong-Chul;Kim, In-Koo
    • Advances in pediatric surgery
    • /
    • v.2 no.2
    • /
    • pp.148-150
    • /
    • 1996
  • Transmesenteric hernia, a type of internal hernias, is a rare cause of intestinal obstruction. This intraperitoneal hernia has no sac and is formed by protrusion of a loop of bowel through an aperture in the mesentery. Incarceration leads to intestinal obstruction and subsequently, strangulation and gangrene of varing lengths of intestine. This is a case report of 4-year-old girl with transmesenteric herniation of the terminal ileum through a defect in its own mesentery. Strangulation of the affected bowel necessitates resection and primary anastomosis with repair of mesenteric defect. The postoperative course was uneventful. Acute intestinal obstruction in the absence of an external hernia and with no history of a previous surgical procedure suggests the possibility of an internal hernia, especially if the patient has a history of chronic intermittent abdominal distress.

  • PDF

Type 4 Tetralogy of Fallot with Pulmonary Hypertension in an American Shorthair Cat

  • Hyeon-Jin Kim;Jihyun Kim;Tae Jung Kim;Ha-Jung Kim
    • Journal of Veterinary Clinics
    • /
    • v.39 no.6
    • /
    • pp.366-372
    • /
    • 2022
  • A 2-year-old, spayed female, American shorthair cat presented with acute weight loss, tachypnea, and dyspnea. The cat had grade V holosystolic murmur and systemic hypotension. Echocardiography showed a 9 mm defect in the ventricular septum, left-to-right dominant bi-directional shunt, right ventricular hypertrophy, pulmonary stenosis, pulmonary hypertension, and overriding aorta. The cat was diagnosed with a Tetralogy of Fallot. The cat was treated with furosemide, pimobendan, ramipril, and sildenafil. Treatment reduced pulmonary infiltration, pulmonary vessel enlargement, and main pulmonary artery bulging. However, right-to-left flow increased over time and right ventricular outflow tract velocity was elevated. Currently, the patient has maintained an improved state for 1 year. This case report described a severe inherited feline Tetralogy of Fallot case that was successfully managed for a long time.

Acute Respiratory Distress Due to Methane Inhalation

  • Jo, Jun Yeon;Kwon, Yong Sik;Lee, Jin Wook;Park, Jae Seok;Rho, Byung Hak;Choi, Won-Il
    • Tuberculosis and Respiratory Diseases
    • /
    • v.74 no.3
    • /
    • pp.120-123
    • /
    • 2013
  • Inhalation of toxic gases can lead to pneumonitis. It has been known that methane gas intoxication causes loss of consciousness or asphyxia. There is, however, a paucity of information about acute pulmonary toxicity from methane gas inhalation. A 21-year-old man was presented with respiratory distress after an accidental exposure to methane gas for one minute. He came in with a drowsy mentality and hypoxemia. Mechanical ventilation was applied immediately. The patient's symptoms and chest radiographic findings were consistent with acute pneumonitis. He recovered spontaneously and was discharged after 5 days without other specific treatment. His pulmonary function test, 4 days after methane gas exposure, revealed a restrictive ventilatory defect. In conclusion, acute pulmonary injury can occur with a restrictive ventilator defect after a short exposure to methane gas. The lung injury was spontaneously resolved without any significant sequela.

Defect Detection of Impacted Composite Tubes by Lock-in Photo-Infrared Thermography Technique (위상잠금 열화상기법을 이용한 복합재 튜브 충격 손상 결함 측정)

  • Kim, Kyoung-Suk;Jeon, So-Young;Jung, Hyun-Chul
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.31 no.2
    • /
    • pp.139-143
    • /
    • 2011
  • The problem of delamination of composite tubes by impact has been acknowledged in aerospace and automobile industry. Non-destructive testing(NDT) methods in composite material structure are important to evaluate reliability of composite structure. There are many kinds of NDT methods which can detect the inside defect of the composite material such as Infrared Thermography(IRT). Infrared thermal imaging of object is different from that of a defect, in heated composite tubes with an internal defect, and then location and size of a defect can be measured by the analysis of thermal imaging pattern. In this study, Lock-in Infrared thermography detect internal defects of Impacted composite tubes by the inspection of infrared lay radiated from the surface of composite tubes.

Effect of Wall Thinning Defect on the Collapse Moment of Elbow (엘보우의 붕괴모멘트에 미치는 감육결함의 영향)

  • Kim, Jin-Won;Kim, Tea-Soon;Park, Chi-Yong
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.622-628
    • /
    • 2003
  • The purpose of this study is to evaluate the effect of local wall thinning on the collapse of elbow subjected to internal pressure and bending moment. Thus, the nonlinear 3D finite element analyses were performed to obtained collapse moment of elbow containing various wall thinning defects under two loading; modes (closing and opening modes) and defect locations (intrados and extrados). From the results of analyses, the influence of wall thinning defect on the global moment-rotation behavior of elbow was discussed, and the dependance of collapse moment of elbow on wall thinning depth, length, and circumferential angle was investigated under different loading mode and defect location.

  • PDF

Effects of Structure and Defect on Fatigue Limit in High Strength Ductile Irons

  • Kim, Jin-Hak;Kim, Min-Gun
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.5
    • /
    • pp.530-536
    • /
    • 2000
  • In this paper, the influence of several factors such as hardness, internal defect and non-propagating crack on fatigue limits was investigated with three kinds of ductile iron specimens. From the experimental results the fatigue limits were examined in relation with hardness and tensile strength in case of high strength specimens under austempering treatment; in consequence the marked improvement of fatigue limits were not showed. The maximum defect size was an important factor to predict and to evaluate the fatigue limits of ductile irons. And, the quantitative relationship between the fatigue limits$({\sigma}_w)$ and the maximum defect sizes $(\sqrt{area}_{max})$ was expressed as ${\sigma}_w^n{\cdot}{\sqrt{area}}_{max}=C_2$. Also, it was possible to explain the difference for the fatigue limits in three ductile irons by introduction of the non-propagating crack rates.

  • PDF

Internal Defection Evaluation of Spot Weld Part and Carbon Composite using the Non-contact Air-coupled Ultrasonic Transducer Method (비접촉 초음파 탐상기법을 이용한 스폿용접부 및 탄소복합체의 내부 결함평가)

  • Kwak, Nam-Su;Lee, Seung-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.11
    • /
    • pp.6432-6439
    • /
    • 2014
  • The NAUT (Non-contact Air coupled Ultrasonic Testing) technique is one of the ultrasonic testing methods that enables non-contact ultrasonic testing by compensating for the energy loss caused by the difference in acoustic impedance of air with an ultrasonic pulser receiver, PRE-AMP and high-sensitivity transducer. As the NAUT is performed in a state of steady ultrasonic transmission and reception, testing can be performed on materials of high or low temperatures or specimens with a rough surface or narrow part, which could not have been tested using the conventional contact-type testing technique. For this study, the internal defects of spot weld, which are often applied to auto parts, and CFRP parts, were tested to determine if it is practical to make the NAUT technique commercial. As the spot welded part had a high ultrasonic transmissivity, the result was shown as red. On the other hand, the part with an internal defect had a layer of air and low transmissivity, which was shown as blue. In addition, depending on the PRF (Pulse Repetition Frequency), an important factor that determines the measurement speed, the color sharpness showed differences. With the images obtained from CFRP specimens or an imaging device, it was possible to identify the shape, size and position of the internal defect within a short period of time. In this paper, it was confirmed in the above-described experiment that both internal defect detection and image processing of the defect could be possible using the NAUT technique. Moreover, it was possible to apply NAUT to the detection of internal defects in the spot welded parts or in CFRP parts, and commercialize its practical application to various fields.

Prediction of the Effect of Defect Parameters on the Thermal Contrast Evolution during Flash Thermography by Finite Element Method

  • Yuan, Maodan;Wu, Hu;Tang, Ziqiao;Kim, Hak-Joon;Song, Sung-Jin;Zhang, Jianhai
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.34 no.1
    • /
    • pp.10-17
    • /
    • 2014
  • A 3D model based on the finite element method (FEM) was built to simulate the infrared thermography (IRT) inspection process. Thermal contrast is an important parameter in IRT and was proven to be a function of defect parameters. Parametric studies were conducted on internal defects with different depths, thicknesses, and orientations. Thermal contrast evolution profiles with respect to the time of the defect and host material were obtained through numerical simulation. The thermal contrast decreased with defect depth and slightly increased with defect thickness. Different orientations of thin defects were detected with IRT, but doing so for thick defects was difficult. These thermal contrast variations with the defect depth, thickness, and orientation can help in optimizing the experimental process and interpretation of data from IRT.