• Title/Summary/Keyword: Internal Combustion Engine

Search Result 469, Processing Time 0.028 seconds

Numerical Analysis for Valve Train Dynamics of an Internal Combustion Engine (내연기관 밸브 트레인 동역학의 수치해석)

  • 이기수;김동우
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.2
    • /
    • pp.31-39
    • /
    • 2003
  • Numerical analysis for valve train dynamics of an internal combustion engine is presented. The components of the valve train are modeled by finite element techniques, and the dynamic contacts between the components are analyzed by the solution strategies of differential algebraic equations. Also an iterative scheme similar to the augmented Lagrange multiplier method is employed to enforce the contact constraints. It is shown that the contact and separation between the components of the valve train can be computed by the finite element techniques, and the numerical examples are presented to demonstrate the efficiency of the solution.

A Study on Electric Power Propulsion System for Small Ship Outboard (소형선박 선외기용 전기동력 시스템 연구)

  • Park, Joo-Sik;Won, Jun-Hee
    • Journal of the Korea Safety Management & Science
    • /
    • v.19 no.4
    • /
    • pp.309-316
    • /
    • 2017
  • Recently, the outboard engine system of internal combustion engine is widely used in the field of small ship propulsion. However, the internal combustion engine has serious problems of energy depletion and environmental problems, so electric propulsion methods are being studied. In this paper, we have developed important motors and controllers of electric propulsion system for small marine outboard motors. The motor design was performed through the motor characteristics analysis method, and the 30Kw system was developed through the BEMF processing circuit and the power conversion circuit by the embedded microprocessor. This study was carried out through government supported projects and achieved quantitative targets through accredited institutions.

An Experimental Study on Reductions of Idle Emissions with the Syngas Assist in an SI Engine (합성가스를 이용한 SI 엔진의 공회전 유해 배기가스 저감에 관한 실험적 연구)

  • Kim, Chang-Gi;Kang, Kern-Young;Song, Chun-Sub;Cho, Young-Seok
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.3
    • /
    • pp.174-182
    • /
    • 2007
  • Fuel reforming technology for the fuel cell vehicles could be applied to internal combustion engine for the reduction of engine out emissions. Since syngas which is reformed from fossil fuel has hydrogen as a major component, it has abilities to enhance the combustion characteristics with wide flammability and high speed flame propagation. In this study, syngas was added to a gasoline engine to improve combustion stability and exhaust emissions of idle state. Syngas fraction is varied to 0%, 50%, 100% with various ignition timing and excess air ratio. Combustion stability, exhaust emissions, fuel consumption and exhaust gas temperature were measured to investigate the effects of syngas addition on idle performance. Results showed that syngas has ability to widely extend lean operation limit and ignition retard range with dramatical reduction of engine out emissions.

Characteristics of Variant Dielectric Constants With Respect to Internal Combustion Engine Oil States (내연기관의 엔진오일상태에 대한 유전율 변화 특성)

  • Kim, Dong-Min;Kim, Yong-Ju;Lee, Seung-Hee
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.15 no.1
    • /
    • pp.19-21
    • /
    • 2012
  • The engine oil life of internal combustion engine is shorted by the thermal effect and that causes air pollution. In order to measure the status of engine oil accurately, the exchange of new oil extends the life of combustion engine and reduces environmental pollution. Capacitance probes, such as engine oil and fluids can be used to measure the dielectric constant. In this paper, the degradation of engine oil varies depending on the degree of dielectric properties was analyzed. Depending on the state of the oil, the variant capacitance of the probe was measured by LCR Meter, respectively, and then the permittivity of oil was calculated. In addition, according to the size of the probe by measuring the change in capacitance measurement, accuracy of dielectric constant are presented. According to oil contaminated with the more increase in dielectric constant, we can decide that contaminated oil is available.

A Study on the PCCI Combustion Characteristics and Flame Visualization in a Diesel Engine (디젤엔진에서의 PCCI 연소 특성과 화염 가시화에 관한 연구)

  • Park, Jinkyu;Lee, Jaemin;Kim, Hyungik;Kim, Yungjin;Lee, Kihyung
    • 한국연소학회:학술대회논문집
    • /
    • 2012.11a
    • /
    • pp.191-193
    • /
    • 2012
  • The use of diesel engines has recently increased due to the need for internal combustion engines with a high thermal efficiency and low harmful exhaust gas. The PCCI(premixed charged compression ignition) technology has been studied specifically to simultaneously reduce NOx and PM. While the PCCI means has the merit of reducing NOx and PM, control of the combustion phase is difficult. In this study, Flame visualization was then performed with an endoscope system in order to compare combustion flame characteristics in an commercial diesel engine.

  • PDF

Study on the Heat Flux Using Instantaneous Temperature in the Constant Volume Combustion Chamber (정적연소기에서 순간온도를 이용한 열유속에 관한 연구)

  • 이치우;김지훈;하종률;김시범
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.4
    • /
    • pp.103-111
    • /
    • 2001
  • In the present study, the internal combustion engine tends to high performance, fuel economy, small-sized. Therefore, it is necessary to solve the problems on thermal load, abnormal combustion, etc in the engine. Thin film instantaneous temperature probe was made, and the measuring system was established. The instantaneous surface temperatures in the constant volume combustion chamber were measured with this system and the heat flux was obtained by Fourier analysis. Maximum instantaneous temperatures were obtained after 55∼60ms from ignition and they increased as equivalence ratio and varied differently as the position of probe. Total heat loss during combustion time was affected by the equivalence ratio and differed widely as the position of probe.

  • PDF

Influence of piston bowl geometry on the in-cylinder flow of HCCI Engine (HCCI 엔진의 실린더 내 유동에 대한 피스톤 보울 형상의 영향)

  • Nam, Seung Man;Lee, Kye Bock
    • Journal of Energy Engineering
    • /
    • v.22 no.4
    • /
    • pp.399-405
    • /
    • 2013
  • The gas motion inside the engine cylinder plays a very important role in determining the thermal efficiency of an internal combustion engine. A precise information of in-cylinder three dimensional complex gas motion is crucial in optimizing engine design. Homogeneous charge compression ignition (HCCI) engine is a combustion concept, which is a hybrid between Otto and Diesel engine. The turbulent diffusion leads to increased rates of momentum, heat and mass transfer. The in-cylinder turbulence flow was found to affect the present HCCI combustion mainly through its influence on the wall heat transfer. This study investigates the effect of piston geometry shape on the turbulent flow characteristics of in-cylinder from the numerical analysis using the LES model and the results obtained can offer guidelines of the combustion geometries for better combustion process and engine performance.

Combustion Tests of Sub-scale Combustor for a Liquid Rocket Engine with Internal Mixing Swirl Injector (내부혼합 동축 와류형 분사기를 장착한 액체로켓엔진용 축소형 연소기의 연소시험)

  • Han, Yeoung-Min;Lee, Kwang-Jin;Lim, Byoung-Jik;Choi, Hwan-Seok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.11 no.5
    • /
    • pp.72-77
    • /
    • 2007
  • The combustion test results of the sub-scale combustor having dual swirl injector with internal mixing for a liquid rocket engine are described. The sub-scale combustor uses liquid oxygen(LOx) and kerosene as propellants and has an injector head, an ablative material combustor wall and a water cooled nozzle. The injector head has LOx manifold, fuel manifold, fire face plate, one center swirl injector and 18 main swirl injectors of internal mixing. The combustion tests were successfully performed at design and off-design points without any damages on the injectors. Combustion characteristics velocity of 1756m/s was measured at design point. High frequency combustion instability was not observed but low frequency pulsations occurred at off-design conditions.

A Study of Injection and Combustion Characteristics on Gasoline Direct Injection in Constant Volume Chamber (정적 연소기 내 가솔린 직접 분사 시 분무 및 연소특성에 관한 연구)

  • Kim, Kyung-Bae;Kang, Seok-Ho;Park, Gi-Young;Seo, Jun-Hyeop;Lee, Young-Hoon;Kim, Dae-Yeol;Lee, Seong-Wock
    • Journal of ILASS-Korea
    • /
    • v.17 no.3
    • /
    • pp.113-120
    • /
    • 2012
  • It is being more serious problems that the pollutant and the greenhouse gas emitted from the internal combustion engines due to the increasing demand of automobiles. To counteract this, as one of the ways has been studied, GDI type engine, which is directly injected into the combustion chamber and burns by a spark ignition that chose the merits of both gasoline engine and diesel engine, was appeared. The combustion phenomena in this GDI engine is known to contribute to combustion stability, fuel consumption reduction and reductions of harmful substances of exhaust gas emission, when the fuel spray of atomization being favorable and the mixture formation being promoted. Accordingly, this study analyzed the affection of ambient temperature and fuel injection pressure to the fuel by investigate the visualization of combustion, combustion pressure and the characteristic of emission, by applying GDI system on the constant combustion chamber. As a result, as the fuel injection pressure increases, the fuel distribution in the combustion chamber becomes uniform due to the increase of penetration and atomization. And when ambient temperatures in the combustion chamber become increase, the fuel evaporation rate being high but the penetration was reduced due to the reduction of volume flux, and confirmed that the optimized fuel injection strategy is highly needed.

The Effect of Mixing Rate and Multi Stage Injection on the Internal Flow Field and Combustion Characteristics of DISI Engine Using Methanol-gasoline Blended Fuel at High Speed / High Load Condition (고속 고부하 상태의 DISI 엔진에서 메탄올-가솔린 혼합연료의 연료 혼합비와 2단 분사가 엔진 내부유동 및 연소특성에 미치는 영향)

  • Bae, Jinwoo;Seo, Juhyeong;Lee, Jae Seong;Kim, Ho Young
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.5
    • /
    • pp.15-24
    • /
    • 2013
  • Numerical studies were conducted to investigate the internal flow field and combustion characteristics of DISI engine with methanol blended in gasoline. Dual injection was applied and the characteristics were compared to single injection strategy. The amount of the fuel injection was corresponded to air-fuel ratio of each fuel for complete combustion. The preforming model in this study, software STAR-CD was employed for both modeling and solving. The operating speed condition were at 4000 rpm/WOT (Wide open throttle) where the engine was fully warmed. The results of single injection with M28 showed that the uniformity, equivalence ratio, in-cylinder pressure and temperature increased comparing to gasoline (M0). When dual injection was applied, there was no significant change in uniformity and equivalence ratio but the in-cylinder pressure and temperature increased. When M28 fuel and single injection was applied, the CO (Carbon monoxide) and NO (Nitrogen oxides) emission inside the combustion chamber increased approximately 36%, 9% comparing with benchmarking case in cylinder prior to TWC (Three Way Catalytic converter). When dual stage injection was applied, both CO and NO emission amount increased.