• 제목/요약/키워드: Intermolecular forces

검색결과 42건 처리시간 0.021초

Spin-coated ultrathin multilayers and their micropatterning using microfluidic channels

  • Hongseok Jang;Kim, Sangcheol;Jinhan Cho;Kookheon Char
    • Korea-Australia Rheology Journal
    • /
    • 제15권1호
    • /
    • pp.1-7
    • /
    • 2003
  • A new method is introduced to build up organic/organic multilayer films composed of cationic poly(allylamine hydrochloride) (PAH) and negatively charged poly (sodium 4-styrenesulfonate) (PSS) using the spinning process. The adsorption process is governed by both the viscous force induced by fast solvent elimination and the electrostatic interaction between oppositely charged species. On the other hand, the centrifugal and air shear forces applied by the spinning process significantly enhances desorption of weakly bound polyelectrolyte chains and also induce the planarization of the adsorbed polyelectrolyte layer. The film thickness per bilayer adsorbed by the conventional dipping process and the spinning process was found to be about 4 ${\AA}$ and 24 ${\AA}$, respectively. The surface of the multilayer films prepared with the spinning process is quite homogeneous and smooth. Also, a new approach to create multilayer ultrathin films with well-defined micropatterns in a short process time is Introduced. To achieve such micropatterns with high line resolution in organic multilayer films, microfluidic channels were combined with the convective self-assembly process employing both hydrogen bonding and electrostatic intermolecular interactions. The channels were initially filled with polymer solution by capillary pressure and the residual solution was then removed by the .spinning process.

미세유체 칩 내에서 유전영동 집게(Dielectrophoretic Tweezers) 를 이용한 단백질A와 면역 글로불린 G의 결합에 관한 연구 (Investigation of the Binding Force between Protein A and Immunoglobulin G Using Dielectrophoretic(DEP) Tweezers Inside a Microfluidic Chip)

  • 곽태준;이재우;윤대성;이상우
    • 대한의용생체공학회:의공학회지
    • /
    • 제34권3호
    • /
    • pp.123-128
    • /
    • 2013
  • The 'Dielectrophoretic Tweezers(DEP Tweezers)' can be used as a facile, economical toolkit for quantitative measurement of chemical and biological binding forces related to many biological interactions within a microfluidic device. Our experimental setup can probe the interaction between a single receptor molecule and its specific ligand. Immunoglobulin G(IgG) functionalized on polystyrene microspheres has been used to detect individual surface linked Staphylococcus protein A(SpA) molecules and to characterize the strength of the noncovalent IgG-SpA bond. It was measured and compared with the existing measurements. Measured single binding force of between Goat, Rabbit IgG and SpA were $17{\pm}7pN$, $74{\pm}16pN$. This work can be used to investigate several different ligand-receptor interactions and antigen-antibody interactions.

거친 면 접촉의 정적 마찰계수 해석 (Analysis of the Static Friction Coefficient of Contacting Rough Surfaces in Miniature Systems)

  • 김태종
    • Tribology and Lubricants
    • /
    • 제19권4호
    • /
    • pp.230-236
    • /
    • 2003
  • In applications such as MEMS and NEMS devices, the adhesion force and contact load may be of the same order of magnitude and the static friction coefficient can be very large. Such large coefficient may result in unacceptable and possibly catastrophic adhesion, stiction, friction and wear. To obtain the static friction coefficient of contacting real surfaces without the assumption of an empirical coefficient value, numerical simulations of the contact load, tangential force, and adhesion force are preformed. The surfaces in dry contact are statistically modeled by a collection of spherical asperities with Gaussian height distribution. The asperity micro-contact model utilized in calculation (the ZMC model), considers the transition from elastic deformation to fully plastic flow of the contacting asperity. The force approach of the modified DMT model using the Lennard-Jones attractive potential is applied to characterize the intermolecular forces. The effect of the surface topography on the static friction coefficient is investigated for cases rough, intermediate, smooth, and very smooth, respectively. Results of the static friction coefficient versus the external force are presented for a wide range of plasticity index and surface energy, respectively. Compared with those obtained by the GW and CEB models, the ZMC model is more complete in calculating the static friction coefficient of rough surfaces.

Desulfurization of Model Oil via Adsorption by Copper(II) Modified Bentonite

  • Yi, Dezhi;Huang, Huan;Li, Shi
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권3호
    • /
    • pp.777-782
    • /
    • 2013
  • In order to further reduce the sulfur content in liquid hydrocarbon fuels, a desulfurization process by adsorption for removing dimethyl sulfide (DMS) and propylmercaptan (PM) was investigated. Bentonite adsorbents modified by $CuCl_2$ for the desulfurization of model oil was investigated. The results indicated that the modified bentonite adsorbents were effective for adsorption of DMS and PM. The bentonite adsorbents were characterized by X-ray diffraction (XRD) and thermal analysis (TGA). The acidity was measured by FT-IR spectroscopy. Several factors that influence the desulfurization capability, including loading and calcination temperature, were studied. The maximum sulfur adsorption capacity was obtained at a Cu(II) loading of 15 wt %, and the optimum calcination temperature was $150^{\circ}C$. Spectral shifts of the ${\nu}$(C-S) and ${\nu}$(Cu-S) vibrations of the complex compound obtained by the reaction of $CuCl_2$ and DMS were measured with the Raman spectrum. On the basis of complex adsorption reaction and hybrid orbital theory, the adsorption on modified bentonite occurred via multilayer intermolecular forces and S-M (${\sigma}$) bonds.

Complexation of Co-contaminant Mixtures between Silver(I) and Polycyclic Aromatic Hydrocarbons

  • Yim, Soo-Bin
    • 한국환경과학회지
    • /
    • 제12권8호
    • /
    • pp.871-879
    • /
    • 2003
  • The complexation of co-contaminant mixtures between Ag(I) and polycyclic aromatic hydrocarbon (PAH) molecules (naphthalene, pyrene, and perylene) were investigated to quantify the equilibrium constants of their complexes and elucidate the interactions between Ag(I) and PAH molecules. The apparent solubilities of PAHs in aqueous solutions increased with increasing Ag(I) ion concentration. The values, K$_1$ and K$_2$ of equilibrium constants of complexes of Ag(I)-PAHs, were 2.990 and 0.378, 3.615 and 1.261, and 4.034 and 1.255, for naphthalene, pyrene, and perylene, respectively, The K$_1$and K$_2$ values of PAHs for Ag(I) increased in the order of naphthalene < pyrene < perylene and naphthalene < pyrene ≒ perylene, respectively, indicating that a larger size of PAH molecule is likely to have more a richer concentration of electrons on the plane surfaces which can lead to stronger complexes with the Ag(I) ion. For the species of Ag(I)-PAH complexes, a 1:1 Ag(I) : the aromatic complex, AgAr$\^$+/, was found to be a predominant species over a 2:1 Ag(I) : aromatic complex, Ag$_2$Ar$\^$++/. The PAH molecules with four or more aromatic rings and/or bay regions were observed to have slightly less affinity with the Ag(I) ion than expected, which might result from inhibiting forces such as the spread of aromatic $\pi$ electrons over o wide molecular surface area and the intermolecular electronic repulsion in bay regions.

Crystal Structure of Byakangelicin ($C_{17}H_{18}O_{7}$)

  • Kim, Yang-Bae;Oh, Yong-Ho;Park, Il-Yeung;Shin, Kuk-Hyun
    • Archives of Pharmacal Research
    • /
    • 제25권3호
    • /
    • pp.275-279
    • /
    • 2002
  • The crystal structure of byakangelicin, one of furanocoumarin aldose reductase inhibitors, was determined by X-ray diffraction method. The crystal is triclinic, with a=8.114(1), b=10.194(1), $c=11.428(1)\AA,{\;}{\alpha}=111.50(1),{\}{\beta}=95.57(1),{\}{\gamma}=112.52(1)^{circ},{\;}D_x=1.41,{\;}D_m=1.39{\;}g/cm^3$, space group P1 and Z=2. The intensity data were collected by ${\omega}-2{\theta}$ scan method with $CuK_{a}$ radiations. The structure was solved by direct method and refined by full matrix least-squares procedure to the final R-value of 0.056. There are two molecules with different conformations in an asymmetric unit. The molecules are kept by two intermolecular O-HO type hydrogen bonds and van der Waal's forces in the crystal. The absolute configuration of the molecules was estimated to S-form by the 'Eta refinement' procedure.

분자 동역학을 이용한 나노임프린트 리소그래피에서의 패턴 전사에 관한 연구 (Molecular Dynamics Study on the Pattern Transfer in Nanoimprint Lithography)

  • 강지훈;김광섭;김경웅
    • Tribology and Lubricants
    • /
    • 제21권4호
    • /
    • pp.177-184
    • /
    • 2005
  • The molecular dynamics simulation of nanoimprint lithography (NIL) using $SiO_2$ stamp and amorphous poly-(methylmethacrylate) (PNMA) film is performed to study pattern transfer in NIL. Force fields including bond, angle, torsion, van der Waals and electrostatic potential are used to describe the intermolecular and intramolecular force of PMMA molecules and $SiO_2$ stamp. Nose-Hoover thermostat is used to control the system temperature and cell multipole method is adopted to treat long range interactions. The deformation of PMMA film is observed during pattern transfer in the NIL process. For the detail analysis of deformation characteristics, the distributions of density and stress in PMHA film are calculated. The adhesion and friction forces are obtained by dividing the PMMA film into subregions and calculating the interacting force between subregion and stamp. Their effects on the pattern transfer are also discussed as varying the indentation depth and speed.

피록시캄의 용매 비의존 결정구조 (The Solvent-Independent Structure of Piroxicam)

  • 김봉희;서일환;지옥인;서종명;서정진
    • Journal of Pharmaceutical Investigation
    • /
    • 제18권4호
    • /
    • pp.209-215
    • /
    • 1988
  • The three-dimensional structures of piroxicam crystallized from two different solvents, toluene and toluene/hexane mixture respectively, are proved identical: $C_{15}H_{13}N_3O_4S,\;M\;=\;331.35$, monoclinic, a = 7.128(1), b = 15.146(2), c = 13.956(2) ${\AA},\;{\beta}=\;97.33(1)^{\circ},\;V\;=\;1494.37{\AA}^{3},\;Dx\;=\;1.472\;g/cm^{3},\;Z\;=\;4,\;space\;group\;P2_{1}/c,\;Mo\;K{\alpha}(\lambda=\;0.71073\;{\AA})$, F(000) = 688, T = 295 K, R = 0.0611 for 1993 unique observed reflections. The thiazine ring exhibits a half chair conformation. An amide group is involved in an intramolecular hydrogen bond to the hydroxy group, O(17)-H(17)${\cdots}O(15){\AA}$. The molecule is planar within 2 ${\AA}$ with the interplanar angle $127.9(4)^{\circ}$ between pyridine and benzene rings. A molecular chain parallel to [011] is formed by two intermolecular hydrogen bonds N(16)-H(6)${\cdots}O(11)$ and C(6)-H(6)${\cdots}O(11)$, and the molecular chains are held together by van der Waals forces.

  • PDF

The crystal and molecular structure of sulfisoxazole

  • Koo, Chung-Hoe;Shin, Hyun-So;Cho, Sung-Il
    • Archives of Pharmacal Research
    • /
    • 제5권2호
    • /
    • pp.79-86
    • /
    • 1982
  • Sulfisoxazole, $C-{11}H_{13}N_{3}S$, crystallized in the orthohombic system, space group Pbca, with a = 14.492(1), b = 11.563(1), c = 14.900(2) $\AA$ and Z = 8. Intensities for 1867(1360 observed) unique reflections were measured on a four-circle diffractometer wirh CuKa radiation ($\lambda$ = 1.5418$\AA$). The structure was solved by heavy atom methods and refined by full-matrix least-squares procedures to a final R of 0.094. The benzene ring plane makes an angle of $68^{\circ}C$ with the plane of the isoxazole ring, which is plannar. The conformational angle formed by the torsional angle C(4)-S-N(2)-C(7) is $54^{\circ}C$. There are two intermolecular hydrogen bonds in the structure. One of them is of the type N-H...H with the length 2.915$\AA$. Thus two dimensional networks of hydrogen bonds form infinite moelcular sheets parallel to the (001) plane. Adjacent sheets are bound together by van der Waals forces.

  • PDF

Sulfadiazine의 結晶 및 分子構造 (The Crystal and Molecular Structure of Sulfadiazine)

  • 신현소;인권식;금훈섭;구정회
    • 대한화학회지
    • /
    • 제18권5호
    • /
    • pp.329-340
    • /
    • 1974
  • X-선 회절법을 이용하여 sulfadiazine, $C_{10}H_{10}N_4O_2S$, 의 결정 및 분자 구조를 규명하였다. Acetone 과 ethanol의 혼합용액으로 부터 얻은 결정은 일사축계에 속하며, 단위세포에는 4분자가 있고, 공간군은 P21/c이다. 단위세포 상수는 $a=13.71{\pm}0.04,\;b=5.84{\pm}0.03,\;c=15.11{\pm}0.05{\AA},\;{\beta}=115.0{\pm}0.3^{\circ}$이다. 결정구조는 3차원적인 와이센버그사진으로 부터 얻어진 실험치를 이용하여 패터슨합성과 프리에합성을 하고 이를 해석하여 밝혀냈다. 수소원자를 제외한 원자들의 좌표치는 최소자승법으로 정밀화 하였으며, 최종 R값은 관측된 1517개의 독립반사에 대하여 0.15이다. 벤젠고리와 피리미딘고리의 두 평면이 이루는 각은 $76^{\circ}$이고, S-N(1)결합을 중심으로 한 N(1)-C(1) 결합과 S-C(5)결합이 이루는 conformational angle은 $77^{\circ}$로서 gauche형을 하고 있다. 이미노기의 질소원자, N(1)은 대칭중심에 의하여 옮겨지는 다른 분자의 피리미딘고리의 질소원자, N(3)와 $N-H{\cdots}N$형의 수소결합을 이루고 있으며, 아미노기의 질소원자, N(4)는 b축의 거리만큼 떨어져 있는 다른분자의 산소원자, O(1) 및 O(2)와 두개의 $N-H{\cdots}O$형 수소결합을 이루고 있다. 이들 수소결합의 2차원적 그물은 (100)면에 평행한 무한한 분자층을 형성하며 인접분자층 사이에는 van der Waals의 힘에 의하여 결합되어 있다

  • PDF