• 제목/요약/키워드: Intermetallic Powder

검색결과 124건 처리시간 0.037초

Sintered $Fe_3Al$ Intermetallic - A New Filter Element for Hot Gas Filtration

  • Xing, Y.;Kuang, X.;Wang, F.;Kuang, C.;Fang, Y.
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part 1
    • /
    • pp.597-598
    • /
    • 2006
  • Gas filtration at high temperature from industrial processes offers various advantages such as increasing process efficiency, improving heat recovery and materials resource recovery, etc. At the same time, it is an advanced environment protection technology. This paper describes a newly developed metallic filter element. The manufacturing process of sintered $Fe_3Al$ metallic powder and the mechanical and filtration characteristics of this filter element were investigated. In this work, the phase constituent changes of the $Fe_3Al$ powder during sintering were studied. The newly developed filter elements were found to have excellent corrosion resistance, good thermal resistance, high strength and high filtration efficiency.

  • PDF

Ni-Al계 금속간화합물의 고주파 연소합성코팅에 미치는 볼 밀링의 영향 (Effects of Ball Milling for Elemental Powders on Ni-Al based Intermetallics Coating on Mild Steel through Induction Heating Process)

  • 이한영;박원규
    • Tribology and Lubricants
    • /
    • 제33권6호
    • /
    • pp.296-302
    • /
    • 2017
  • Ball milling of elemental powders in advance and using an induction heating system for intermetallic coatings are known to enhance the reactivity of combustion synthesis. In this work, the effects of simultaneously applying these two incentive methods on the properties of intermetallic coatings are studied. Ni-Al powder compacts ball-milled with three different ball-to-powder weight ratio mixtures are synthesized and coated on mild steel by combustion synthesis in an induction heating system. Consequently, similar to an electrical heating system, the positive effects of ball milling on the combustion synthesis are confirmed in the induction heating system. The enhancement in synthetic reactivity achieved by applying the two incentive methods at the same time is greater than that by applying each incentive method separately. In particular, the enhancement is remarkable at low reaction temperature. However, there are limitations to improving the reactivity by simultaneously applying the two incentive methods to the combustion synthesis, unlike the reaction temperature. The microstructure and hardness of the coating layer are both influenced by the ball-charging ratio employed in the ball-milling process.

기계적합금화법에 의해 제조된 NiAl 나노금속간화합물 소결체의 인성 및 제진특성 (Toughness and Damping Properties of Nanostructured Ni-Al Alloys Produced by Mechanical Alloying Methods)

  • 안인섭;김형범;김영도;김지순
    • 한국분말재료학회지
    • /
    • 제7권3호
    • /
    • pp.143-148
    • /
    • 2000
  • NiAl alloy powders were prepared by mechanical alloying method and bulk specimens were produced using hot isostatic pressing techniques. This study focused on the transformation behavior and properties of Ni-Al mechanically alloyed powders and bulk alloys. Transformation behavior was investigated by differential scanning calorimeter (DSC), XRD and TEM. Particle size distribution and microstructures of mechanically alloyed powders were studied by particle size analyzer and scanning electron microscope (SEM). After 10 hours milling, XRB peak broadening appeared at the alloyed powders with compositions of Ni-36at%Al to 40at%Al. The NiAl and $Ni_3Al$ intermetallic compounds were formed after water quenching of solution treated powders and bulk samples at $1200^{\circ}C$, but the martensite phase was observed after liquid nitrogen quenching of solution treated powders. However, the formation of $Ni_3Al$ intermetallic compounds were not restricted by fast quenching into liquid nitrogen. It is considered to be caused by fast diffusion of atoms for the formation of stable $\beta$(NiAl) phase and $Ni_3Al$ due to nano sized grains during quenching. Amounts of martensite phase increased as the composition of aluminium component decreased in the Ni-Al alloy, which resulted in the increasing damping properties.

  • PDF

THE SCIENCE AND TECHNOLOGY OF MECHANICAL ALLOYING

  • Suryanarayana, C.
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2000년도 추계학술대회 및 발표대회 강연 및 발표논문 초록집
    • /
    • pp.10-10
    • /
    • 2000
  • Mechanical alloying (MA) is a powder metallurgy processing technique involving cold welding, fracturing, and rewelding of powder particles in a high-energy ball mill. This has now become an established commercial technique in producing oxide dispersion strengthened (ODS) nickel- and iron-based materials. The technique of MA is also capable of synthesizing non-equilibrium phases such as supersaturated solid solutions, metastable crystalline and quasicrystalline intermetallic phases, nanostructures, and amorphous alloys. In this respect, the capabilities of MA are similar to those of another important non-equilibrium processing technique, viz, rapid quenching of metallic melts. however, the science of MA is being investigated only during the past ten years or so. The technique of mechanochemistry, on the other hand, has had a long history and the materials produced this way have found a number of technological applications, e.g., in areas such as hydrogen storage materials, heaters, gas absorber, fertilizers. catalysts, cosmetics, and waste management. The present talk will concentrate on the basic mechanisms of formation of non-equilibrium phases by the technique of MA and these aspects will be compared with those of rapid quenching of metallic melts. Additionally, the variety of technological applications of mechanically alloyed products will be highlighted.

  • PDF

Synthesis of Intermetallics and Nanocomposites by High-Energy Milling

  • Bernd F. Kieback;H. Kubsch;Alexander Bohm;M. Zumdick;Thomas Weissgaerber
    • 한국분말재료학회지
    • /
    • 제9권6호
    • /
    • pp.416-421
    • /
    • 2002
  • Elemental powders are used in high energy milling processes for the synthesis of new compounds. The low temperature solid state reactions during milling in inert gas atmosphere may result in intermetallic phases, carbides, nitrides or silicides with a nanocrystalline structure. To obtain dense materials from the powders a pressure assisted densification is necessary. On the other side the defect-rich microstructure can be used for activated sintering of elemental powder mixtures to obtain dense bodies by pressureless sintering. Results are discussed for nanocrystalline cermet systems and for the sintering of aluminides and silicides.

Al-8wt.%Fe 분말의 기계적 합금화 거동과 열적안정성에 미치는 Ce의 영향 (Effects of Ce on the Mechanical Alloying Behavior and Thermal Stability of Al-8wt.%Fe Powder)

  • 오광진
    • 한국분말재료학회지
    • /
    • 제1권1호
    • /
    • pp.4-14
    • /
    • 1994
  • The effects of Ce on the mechanical alloying behavior and the thermal stability of Al-8wt.%Fe were investigated. The steady states of Al-8wt.%Fe and Al-8wt.%Fe-4wt.%Ce powders with 1.5 wt.% stearic acid as a process control agent were reached after mechanical alloying for 1000 minuties and 1300 minuties respectively at the conditions of the impeller revolving velocity of 300 rpm and the ball to powder input ratio of 50 : 1. The hardness of Al-8wt.%Fe specimen hot extruded and isothermally aged at various temperatures for up to 1000 hours decreased rapidly at 50$0^{\circ}C$ and its high temperature ultimate tensile strength began to decrease at 40$0^{\circ}C$ with increasing aging time. The decrease in the hardness and ultimate tensile strength of the specimen were reduced substantially by addition of Ce. It was thought to be due to the formation of thermally stable A14Ce and All3Fe3Ce intermetallic compounds.

  • PDF

Development of Heat- and Creep-resistant Fine-grained Rapidly Solidified P/M Aluminum Alloy

  • Kaji, Toshihiko;Tokuoka, Terukazu;Nishioka, Takao
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part2
    • /
    • pp.720-721
    • /
    • 2006
  • The new alloy$^{1)}$ is made from rapidly solidified Al-Ni-Zr-Ce aluminum alloy powder, and has the following unique mechanical characteristics:(1) The stress-strain curve shows a yield point; (2) The alloy shows high heat resistance; (3) Although the alloy is submicron particle diameter, it shows excellent creep resistance. We observed the micro structures of this new alloy, and it is thought that is based on the following reasons:(1) The dislocation strongly adheres to the alloy's many crystal boundaries;(2) The added alloying elements have a small diffusion coefficient in aluminum;(3) The tiny intermetallic compound particles crystallizing at the grain boundary.

  • PDF

Ti 및 Ti계 세라믹스에 의한 Al합금의 표면복합합금화 (Formation of Ti and Ti ceramics composite layer on aluminium alloy)

  • 임병수;문정훈;서창제
    • Journal of Welding and Joining
    • /
    • 제13권1호
    • /
    • pp.103-114
    • /
    • 1995
  • Plasma Transferred arc(PTA) hard facing process has been developed to obtain an overlay weld metal having excellent wear resistance. The effect of Ti, TiSi$_{2}$ and TiC powders addition on the surface of Aluminum alloy 5083 has been investigated with PTA process. This paper describes the result of test the performance of the overlay weld metal. The result can be summarized as follows 1. Intermetallic compound is formed on surface of base metal in Ti or TiSi$_{2}$ powder but the reaction with surface of base metal is little seen in TiC powder. 2. In formation of composite layer on aluminum alloy surface by plasma transferred arc welding process, high melting ceramics like TiC powder is excellent. 3. The multipass welding process is available for formation of high density of powder. But the more number of pass, the less effect of powder, it is considered, and limits of number of pass. 4. By increasing area fraction of TiC powder on Al alloy surface, in especially TiC powder the hardness increase more than 40% area fraction and 88% shows about Hv 700.

  • PDF

PbTe 열전재료의 기계적 합금화 거동 (Mechanical alloying behavior of PbTe thermoelectric materials)

  • 오태성;최재식;현도빈
    • 한국재료학회지
    • /
    • 제5권2호
    • /
    • pp.223-231
    • /
    • 1995
  • 열전발전용 재료인 PbTe의 밀링 시간, 볼과 분말의 무게비에 따른 기계적 합금화 거동을 연구하였다. Pb와 Te 분말을 볼과 분말의 무게비 2 : 1에서 2분간 기계적 합금화 함으로써 PbTe 금속간 화합물의 형성이 완료되었다. 밀링 공정중 vial 표면 온도의 in situ 측정에서 기계적 합금화에 의한 PbTe 금속간 화합물의 형성이 분말 계면에서의 확산 공정보다는 합금화 반응이 자발적으로 전파하는 자전 반응에 의하여 이루어지는 것을 알 수 있었다. 기계적 합금화로 제조한 PbTe 합금분말의 격자상수는 0.6462nm로 용해 및 분쇄법으로 제조한 PbTe 분말에서 보고된 값인 0.6459nm와 잘 일치하였으며, 밀링 시간의 증가 및 볼과 분말의 무게비의 변화에 의하여 변하지않았다.

  • PDF