• Title/Summary/Keyword: Intermediate flow

Search Result 338, Processing Time 0.025 seconds

Electronics Cooling Using the Porous Metallic Materials

  • Lucaci, Mariana;Orban, Radu L.;Lungu, Magdalena;Enescu, Elena;Gavriliu, Stefania
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.315-316
    • /
    • 2006
  • The paper presents some results regarding the obtaining of some copper heat pipes with a porous copper internal layer for electronic components cooling. The heat pipes were realized by sintering of spherical copper powders of $90{\div}125\;{\mu}m$ size directly on the internal side of a copper pipe of 18 mm in diameter. The obtained pipes were then brazed in order to obtain a heat pipe of 0.5 m in length. After that, the heat pipe was sealed and filled with a small quantity of distilled water as working fluid. To establish the total heat transport coefficient and the thermal flow transferred at the evaporator, some external devices were realized to allow the heating of the evaporator and the cooling of the condenser. Water heat pipes are explored in the intermediate temperature range of 303 up to 500 K. Test data are reported for copper water heat pipe, which was tested under different orientations. The obtained results show that the water heat pipe has a good thermal transfer performance in the temperatures range between 345 and 463 K.

  • PDF

Dynamic Material Characteristics of Superalloy INCONEL 718 with the Variation of Strain Rates (변형률속도 변화에 따른 INCONEL 718 초내열합금의 동적 물성특성)

  • Song J. H.;Huh H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.275-278
    • /
    • 2005
  • INCONEL 718, nickel based superalloy, has good formability, high strength, excellent corrosion resistance and mechanical properties at high temperature. Owing to theses attractive properties, it finds use in applications such as combustion system, turbine engines and nuclear reactors. In such applications, components are typically required to be tolerant of high stress impact loading. This may cause material degradation and lead to catastrophic failure during service operation. In order to design optimal structural parts made of INCONEL 718, accurate understanding of material's mechanical properties, dynamic behavior and fracture characteristic as a function of strain rates are required. This paper concerned with the dynamic material properties of the INCONEL 718 for the various strain rates. The dynamic response of the INCONEL 718 at intermediate strain rate is obtained from the high speed tensile test machine test and at the high strain rate is from the split Hopkinson pressure bar test. Based on the experimental results, the effects of strain rate on dynamic flow stress, work hardening characteristics, strain rate sensitivity and elongation to the failure are evaluated. Experimental results from both quasi-static and high strain rate up to the 5000/sec are interpolated in order to construct the Johnson-Cook model as the constitutive relation that should be applied to simulate and design the structural parts made of INCONEL 718.

  • PDF

Dynamic Material Characteristics of Superalloy INCONEL 718 with the Variation of Strain Rates (변형률속도 변화에 따른 INCONEL 718 초내열합금의 동적 물성특성)

  • Song J. H.;Huh H.
    • Transactions of Materials Processing
    • /
    • v.14 no.6 s.78
    • /
    • pp.559-564
    • /
    • 2005
  • INCONEL 718, nickel based superalloy, has good formability, high strength, excellent corrosion resistance and mechanical properties at high temperature. Owing to theses attractive properties, it is utilized in applications such as combustion system, turbine engines and nuclear reactors. In such applications, components are typically required to be tolerant of high stress impact loading. This may cause material degradation and lead to catastrophic failure during service operation. Accurate understanding of material's mechanical properties with various strain rates is required in order to guarantee the reliability of structural parts made of INCONEL 718. This paper is concerned with the dynamic material properties of the INCONEL 718 at various strain rates. The dynamic response of the INCONEL 718 at the intermediate strain rate is obtained from the high speed tensile test and at the high strain rate is from the split Hopkinson pressure bar test. The effect of the strain rate on dynamic flow stress, work hardening characteristics, strain rate sensitivity and elongation to the failure is evaluated with the experimental results. Experimental results from both the quasi-static and the high strain rate up to 5000/sec are interpolated in order to construct the Johnson-Cook model as the constitutive relation that should be applied to simulate and design the structural parts made of rNCONEL 718.

A Network Coding-Aware Routing Mechanism for Time-Sensitive Data Delivery in Multi-Hop Wireless Networks

  • Jeong, Minho;Ahn, Sanghyun
    • Journal of Information Processing Systems
    • /
    • v.13 no.6
    • /
    • pp.1544-1553
    • /
    • 2017
  • The network coding mechanism has attracted much attention because of its advantage of enhanced network throughput which is a desirable characteristic especially in a multi-hop wireless network with limited link capacity such as the device-to-device (D2D) communication network of 5G. COPE proposes to use the XOR-based network coding in the two-hop wireless network topology. For multi-hop wireless networks, the Distributed Coding-Aware Routing (DCAR) mechanism was proposed, in which the coding conditions for two flows intersecting at an intermediate node are defined and the routing metric to improve the coding opportunity by preferring those routes with longer queues is designed. Because the routes with longer queues may increase the delay, DCAR is inefficient in delivering real-time multimedia traffic flows. In this paper, we propose a network coding-aware routing protocol for multi-hop wireless networks that enhances DCAR by considering traffic load distribution and link quality. From this, we can achieve higher network throughput and lower end-to-end delay at the same time for the proper delivery of time-sensitive data flow. The Qualnet-based simulation results show that our proposed scheme outperforms DCAR in terms of throughput and delay.

Influences of seepage force and out-of-plane stress on cavity contracting and tunnel opening

  • Zou, Jin-Feng;Chen, Kai-Fu;Pan, Qiu-Jing
    • Geomechanics and Engineering
    • /
    • v.13 no.6
    • /
    • pp.907-928
    • /
    • 2017
  • The effects of seepage force and out-of-plane stress on cavity contracting and tunnel opening was investigated in this study. The generalized Hoek-Brown (H-B) failure criterion and non-associated flow rule were adopted. Because of the complex solution of pore pressure in an arbitrary direction, only the pore pressure through the radial direction was assumed in this paper. In order to investigate the effect of out-of-plane stress and seepage force on the cavity contraction and circular tunnel opening, three cases of the out-of-plane stress being the minor, intermediate, or major principal stress are assumed separately. A method of plane strain problem is adopted to obtain the stress and strain for cavity contracting and circular tunnel opening for three cases, respectively, that incorporated the effects of seepage force. The proposed solutions were validated by the published results and the correction is verified. Several cases were analyzed, and parameter studies were conducted to highlight the effects of seepage force, H-B constants, and out-of-plane stress on stress, displacement, and plastic radius with the numerical method. The proposed method may be used to address the complex problems of cavity contraction and tunnel opening in rock mass.

Empirical numerical model of tornadic flow fields and load effects

  • Kim, Yong Chul;Tamura, Yukio
    • Wind and Structures
    • /
    • v.32 no.4
    • /
    • pp.371-391
    • /
    • 2021
  • Tornadoes are the most devastating meteorological natural hazards. Many empirical and theoretical numerical models of tornado vortex have been proposed, because it is difficult to carry out direct measurements of tornado velocity components. However, most of existing numerical models fail to explain the physical structure of tornado vortices. The present paper proposes a new empirical numerical model for a tornado vortex, and its load effects on a low-rise and a tall building are calculated and compared with those for existing numerical models. The velocity components of the proposed model show clear variations with radius and height, showing good agreement with the results of field measurements, wind tunnel experiments and computational fluid dynamics. Normal stresses in the columns of a low-rise building obtained from the proposed model show intermediate values when compared with those obtained from existing numerical models. Local forces on a tall building show clear variation with height and the largest local forces show similar values to most existing numerical models. Local forces increase with increasing turbulence intensity and are found to depend mainly on reference velocity Uref and moving velocity Umov. However, they collapse to one curve for the same normalized velocity Uref / Umov. The effects of reference radius and reference height are found to be small. Resultant fluctuating force of generalized forces obtained from the modified Rankine model is considered to be larger than those obtained from the proposed model. Fluctuating force increases as the integral length scale increases for the modified Rankine model, while they remain almost constant regardless of the integral length scale for the proposed model.

Trends of Compiler Development for AI Processor (인공지능 프로세서 컴파일러 개발 동향)

  • Kim, J.K.;Kim, H.J.;Cho, Y.C.P.;Kim, H.M.;Lyuh, C.G.;Han, J.;Kwon, Y.
    • Electronics and Telecommunications Trends
    • /
    • v.36 no.2
    • /
    • pp.32-42
    • /
    • 2021
  • The rapid growth of deep-learning applications has invoked the R&D of artificial intelligence (AI) processors. A dedicated software framework such as a compiler and runtime APIs is required to achieve maximum processor performance. There are various compilers and frameworks for AI training and inference. In this study, we present the features and characteristics of AI compilers, training frameworks, and inference engines. In addition, we focus on the internals of compiler frameworks, which are based on either basic linear algebra subprograms or intermediate representation. For an in-depth insight, we present the compiler infrastructure, internal components, and operation flow of ETRI's "AI-Ware." The software framework's significant role is evidenced from the optimized neural processing unit code produced by the compiler after various optimization passes, such as scheduling, architecture-considering optimization, schedule selection, and power optimization. We conclude the study with thoughts about the future of state-of-the-art AI compilers.

Deformation of Non-linear Dispersive Wave over the Submerged Structure (해저구조물에 대한 비선형분산파의 변형)

  • Park, D.J.;Lee, J.W.
    • Journal of Korean Port Research
    • /
    • v.12 no.1
    • /
    • pp.75-86
    • /
    • 1998
  • To design a coastal structure in the nearshore region, engineers must have means to estimate wave climate. Waves, approaching the surf zone from offshore, experience changes caused by combined effects of bathymetric variations, interference of man-made structure, and nonlinear interactions among wave trains. This paper has attempted to find out the effects of two of the more subtle phenomena involving nonlinear shallow water waves, amplitude dispersion and secondary wave generation. Boussinesq-type equations can be used to model the nonlinear transformation of surface waves in shallow water due to effect of shoaling, refraction, diffraction, and reflection. In this paper, generalized Boussinesq equations under the complex bottom condition is derived using the depth averaged velocity with the series expansion of the velocity potential as a product of powers of the depth of flow. A time stepping finite difference method is used to solve the derived equation. Numerical results are compared to hydraulic model results. The result with the non-linear dispersive wave equation can describe an interesting transformation a sinusoidal wave to one with a cnoidal aspect of a rapid degradation into modulated high frequency waves and transient secondary waves in an intermediate region. The amplitude dispersion of the primary wave crest results in a convex wave front after passing through the shoal and the secondary waves generated by the shoal diffracted in a radial manner into surrounding waters.

  • PDF

Development of Cross-sectional Information Conversion System from STL file for Stereolithography (Stereolithography를 위한 STL파일로부터 단면정보 변환시스템의 개발)

  • Choi, Hong-Tae;Kim, Jun-An;Lee, Seok-Hee;Paik, In-Hwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.11
    • /
    • pp.140-147
    • /
    • 1995
  • This paper deals with conversion from the STL file to the Slice to the Slice cross-sectional information for Stereolithography. The STL file is widely used for Stereolithography, but it is very difficult to convert STL file into Slice file directly. Because it consists of an ordered list of triangular net without any topological information other than the orientation of each facet. So, The system is accomplished by data flow through several intermediate stages such as Reference. SL1. .SL2L. .SL3. and .SLC file. The data processing is performed in 5 steps: 1) Create a Reference file including common information. 2) Modify STL file within the effective range of SL machine. 3) Calculate a point of intersection between plane equation and line equation. 4) Sort z values in ascending order using quick sort algorithm. 5) Search the adjacent points and formulate a closed loop usingsingly linked linear list. The system is developed by using Borland C++ 3.1 compiler in the environment of Pentium PC, and verified to be satisfactory by making some prototypes of electric household appliances.

  • PDF

A Study on the Field Application of Automatic Grouting System (자동화 그라우팅 기법의 현장적용성에 관한 연구)

  • Do, Jongnam;Park, Junghwan;Choi, Dongchan;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.1
    • /
    • pp.63-74
    • /
    • 2012
  • In Korea, grouting has been mostly designed and constructed by experiences without expert knowledge and theoretical study. So there are a lot of problems related to the quality and safty of grouting. Therefor, in this paper the quality management skills and method were discussed through out by using the auto-grouting method and field test of grouting for the construction. Through the limit water injection test of the soil, it make the optimum injection pressure and injection speed of grouting, and through the lugeon test of the rock, it make assess the permeability of before and after grouting. In order to prevent the hydraulic fracture of soil and break away from the grouts if it apply four kinds of mode of grouting stop criteria, injection effects can be improved. From the above characteristcs designers evalute the fitness values of injection pressure(p), injection speed(q) and grouting penetration time(t). So far, to record and manage pressure(p) and speed(q) of grouting autographic devices such as intergation flow-meter usually record data in a roll of paper. Intergration flow-meter can record grouting flow quantity exactly, but the recorded pressures differ from the any basis such as intitial, intermediate and final point. Therefore, it has been argued that is a need of reliable method to describe the connection between the pressure recorded by an intergration flow-meter and the special properties of the grouting target ground. auto-grouting method can describe the reliable connection between the grouting pressure and the special properties of the grouting target ground. So, in this paper by using auto-grouting method, it is expected that to secure basis of quality control techniques construction.