• Title/Summary/Keyword: Intermediate View Image

Search Result 53, Processing Time 0.051 seconds

A New Intermediate View Reconstruction Scheme based-on Stereo Image Rectification Algorithm (스테레오 영상 보정 알고리즘에 기반한 새로운 중간시점 영상합성 기법)

  • 박창주;고정환;김은수
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.5C
    • /
    • pp.632-641
    • /
    • 2004
  • In this paper, a new intermediate view reconstruction method employing a stereo image rectification algorithm by which an uncalibrated input stereo image can be transformed into the calibrated one is suggested and its performance is analyzed. In the proposed method, feature point are extracted from the stereo image pair though detection of the corners and similarities between each pixel of the stereo image. And then, using these detected feature points, the moving vectors between stereo image and the epipolar line is extracted. Finally, the input stereo image is rectified by matching the extracted epipolar line between the stereo image in the horizontal direction and intermediate views are reconstructed by using these rectified stereo images. From some experiments on synthesis of the intermediate views by using three kinds of stereo image; a CCETT's stereo image of 'Man' and two stereo images of 'Face' & 'Car' captured by real camera, it is analyzed that PSNRs of the intermediate views reconstructed from the calibrated image by using the proposed rectification algorithm are improved by 2.5㏈ for 'Man', 4.26㏈ for 'Pace' and 3.85㏈ for 'Car' than !hose of the uncalibrated ones. This good experimental result suggests a possibility of practical application of the unposed stereo image rectification algorithm-based intermediate view reconstruction view to the uncalibrated stereo images.

Intermediate View Image and its Digital Hologram Generation for an Virtual Arbitrary View-Point Hologram Service (임의의 가상시점 홀로그램 서비스를 위한 중간시점 영상 및 디지털 홀로그램 생성)

  • Seo, Young-Ho;Lee, Yoon-Hyuk;Koo, Ja-Myung;Kim, Dong-Wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.1
    • /
    • pp.15-31
    • /
    • 2013
  • This paper proposes an intermediate image generation method for the viewer's view point by tracking the viewer's face, which is converted to a digital hologram. Its purpose is to increase the viewing angle of a digital hologram, which is gathering higher and higher interest these days. The method assumes that the image information for the leftmost and the rightmost view points within the viewing angle to be controlled are given. It uses a stereo-matching method between the leftmost and the rightmost depth images to obtain the pseudo-disparity increment per depth value. With this increment, the positional informations from both the leftmost view point and the rightmost view point are generated, which are blended to get the information at the wanted intermediate viewpoint. The occurrable dis-occlusion region in this case is defined and a inpainting method is proposed. The results from implementing and experimenting this method showed that the average image qualities of the generated depth and RGB image were 33.83[dB] and 29.5[dB], respectively, and the average execution time was 250[ms] per frame. Also, we propose a prototype system to service digital hologram interactively to the viewer by using the proposed intermediate view generation method. It includes the operations of data acquisition for the leftmost and the rightmost viewpoints, camera calibration and image rectification, intermediate view image generation, computer-generated hologram (CGH) generation, and reconstruction of the hologram image. This system is implemented in the LabView(R) environments, in which CGH generation and hologram image reconstruction are implemented with GPGPUs, while others are implemented in software. The implemented system showed the execution speed to process about 5 frames per second.

Intermediate Image Generation based on Disparity Path Search in Block of Disparity Space Image (시차공간영상에서의 구간별 시차 경로 탐색을 이용한 중간 영상 생성)

  • Kwak, Ji-Hyun;Kim, Kyung-Tae
    • The KIPS Transactions:PartB
    • /
    • v.15B no.1
    • /
    • pp.9-16
    • /
    • 2008
  • In this paper, we present an algorithm for synthesizing intermediate view image from a stereoscopic pair of images. An image of multiview is need for people in order to easily recognize 3D image. However, if many cameras are use for that, not only does system get more complicated but also transmission rating cause a big trouble. Hence, stereo images are photograph and issue on the sending side and algorithm to generate several intermediate view image is able to be use on the receiving side. The proposed method is based on disparity space image. First of all, disparity space image that is depicted by the gap of pixel followed by disparity of stereo image is generated. Disparity map is made by utilizing disparity space image for searching for optimal disparity path then eventual intermediate view image is generated after occlusion region which does not match is processed. Experimental results illustrate the performance of the proposed technique and we obtained a high quality image of more than 30 dB PSNR.

Fast Generation of Intermediate View Image Using GPGPU-Based Disparity Increment Method (GPGPU 기반의 변위증분 방법을 이용한 중간시점 고속 생성)

  • Koo, Ja-Myung;Seo, Young-Ho;Kim, Dong-Wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.8
    • /
    • pp.1908-1918
    • /
    • 2013
  • Free-view, auto-stereoscopic video service is a next generation broadcasting system which offers a three-dimensional video, images of the various point are needed. This paper proposes a method that parallelizes the algorithm for arbitrary intermediate view-point image fast generation and make it faster using General Propose Graphic Processing Unit(GPGPU) with help of the Compute Unified Device Architecture(CUDA). It uses a parallelized stereo-matching method between the leftmost and the rightmost depth images to obtain disparity information and It use data calculated disparity increment per depth value. The disparity increment is used to find the location in the intermediate view-point image for each depth in the given images. Then, It is eliminate to disocclusions complement each other and remaining holes are filled image using hole-filling method and to get the final intermediate view-point image. The proposed method was implemented and applied to several test sequences. The results revealed that the quality of the generated intermediate view-point image corresponds to 30.47dB of PSNR in average and it takes about 38 frames per second to generate a Full HD intermediate view-point image.

Development of a Multi-view Image Generation Simulation Program Using Kinect (키넥트를 이용한 다시점 영상 생성 시뮬레이션 프로그램 개발)

  • Lee, Deok Jae;Kim, Minyoung;Cho, Yongjoo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.10a
    • /
    • pp.818-819
    • /
    • 2014
  • Recently there are many works conducted on utilizing the DIBR (Depth-Image-Based Rendering) based intermediate images for the three-dimensional displays that do not require the use of stereoscopic glasses. However the prior works have used expensive depth cameras to obtain high-resolution depth images since DIBR-based intermediate image generation method requires the accuracy for depth information. In this study, we have developed the simulation to generate multi-view intermediate images based on the depth and color images using Microsoft Kinect. This simulation aims to support the acquisition of multi-view intermediate images utilizing the low-resolution depth and color image from Kinect, and provides the integrated service for the quality evaluation of the intermediate images. This paper describes the architecture and the system implementation of this simulation program.

  • PDF

Intermediate Image Generation of Stereo Image Using Depth Information and Block-based Matching Method (깊이정보와 블록기반매칭을 이용한 스테레오 영상의 중간영상 생성)

  • 양광원;허경무;김장기
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.10
    • /
    • pp.874-880
    • /
    • 2002
  • A number of techniques have been proposed for 3D display using view-difference of two eyes. These methods do not express enough reality like real world. The display images have to change according to the position of a viewer to improve reality. In this paper, we present an approach for generating intermediate image between two different view images by applying new image interpolation algorithm The interpolation algorithm is designed to cope with complex shapes. The proposed image interpolation algorithm generates rotated image about vertical axes by any angle from base images. Each base image that was obtained from CCD camera has an view-angle difference of $3^{\circ}C$, $5.5^{\circ}C$, $^{\circ}C$, $22^{\circ}C$, and $45^{\circ}C$. The proposed into mediate image generation method uses the geometric analysis of image and depth information through the block-based matching method.

Multi-view Synthesis Algorithm for the Better Efficiency of Codec (부복호화기 효율을 고려한 다시점 영상 합성 기법)

  • Choi, In-kyu;Cheong, Won-sik;Lee, Gwangsoon;Yoo, Jisang
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.2
    • /
    • pp.375-384
    • /
    • 2016
  • In this paper, when stereo image, satellite view and corresponding depth maps were used as the input data, we propose a new method that convert these data to data format suitable for compressing, and then by using these format, intermediate view is synthesized. In the transmitter depth maps are merged to a global depth map and satellite view are converted to residual image corresponding hole region as out of frame area and occlusion region. And these images subsampled to reduce a mount of data and stereo image of main view are encoded by HEVC codec and transmitted. In the receiver intermediate views between stereo image and between stereo image and bit-rate are synthesized using decoded global depth map, residual images and stereo image. Through experiments, we confirm good quality of intermediate views synthesized by proposed format subjectively and objectively in comparison to intermediate views synthesized by MVD format versus total bit-rate.

A New Rectification Scheme for Uncalibrated Stereo Image Pairs and Its Application to Intermediate View Reconstruction

  • Ko, Jung-Hwan;Jung, Yong-Woo;Kim, Eun-Soo
    • Journal of Information Display
    • /
    • v.6 no.4
    • /
    • pp.26-34
    • /
    • 2005
  • In this paper, a new rectification scheme to transform the uncalibrated stereo image pair into the calibrated one is suggested and its performance is analyzed by applying this scheme to the reconstruction of the intermediate views for multi-view stereoscopic display. In the proposed method, feature points are extracted from the stereo image pair by detecting the comers and similarities between each pixel of the stereo image pair. These detected feature points, are then used to extract moving vectors between the stereo image pair and the epipolar line. Finally, the input stereo image pair is rectified by matching the extracted epipolar line between the stereo image pair in the horizontal direction. Based on some experiments done on the synthesis of the intermediate views by using the calibrated stereo image pairs through the proposed rectification algorithm and the uncalibrated ones for three kinds of stereo image pairs; 'Man', 'Face' and 'Car', it is found that PSNRs of the intermediate views reconstructed from the calibrated images improved by about 2.5${\sim}$3.26 dB than those of the uncalibrated ones.

View synthesis in uncalibrated images (임의 카메라 구조에서의 영상 합성)

  • Kang, Ji-Hyun;Kim, Dong-Hyun;Sohn, Kwang-Hoon
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.437-438
    • /
    • 2006
  • Virtual view synthesis is essential for 3DTV systems, which utilizes the motion parallax cue. In this paper, we propose a multi-step view synthesis algorithm to efficiently reconstruct an arbitrary view from limited number of known views of a 3D scene. We describe an efficient image rectification procedure which guarantees that an interpolation process produce valid views. This rectification method can deal with all possible camera motions. The idea consists of using a polar parameterization of the image around the epipole. Then, to generate intermediate views, we use an efficient dense disparity estimation algorithm considering features of stereo image pairs. Main concepts of the algorithm are based on the region dividing bidirectional pixel matching. The estimated disparities are used to synthesize intermediate view of stereo images. We use computer simulation to show the result of the proposed algorithm.

  • PDF

Intermediate Depth Image Generation using Disparity Increment of Stereo Depth Images (스테레오 깊이영상의 변위증분을 이용한 중간시점 깊이영상 생성)

  • Koo, Ja-Myung;Seo, Young-Ho;Choi, Hyun-Jun;Yoo, Ji-Sang;Kim, Dong-Wook
    • Journal of Broadcast Engineering
    • /
    • v.17 no.2
    • /
    • pp.363-373
    • /
    • 2012
  • This paper proposes a method to generate a depth image at an arbitrary intermediate view-point, which is targeting a video service for free-view, auto-stereoscopy, holography, etc. It assumes that the leftmost and the rightmost depth images are given and they both have been camera-calibrated and image-rectified. This method calculates and uses a disparity increment per depth value. In this paper, it is obtained by stereo matching for the given two depth image by considering more general cases. The disparity increment is used to find the location in the intermediate view-point depth image (IVPD) for each depth in the given images. Thus, this paper finds two IVPDs, from left image and from right image. Noises are removed and holes are filled in each IVPDs and the two results are combined to get the final IVPD. The proposed method was implemented and applied to several test sequences. The results revealed that the quality of the generated IVPD corresponds to 33.84dB of PSNR in average and it takes about 1 second to generate a HD IVPD. We evaluate that this image quality is quite good by considering the low correspondency among the left images, intermediate images, and the right images in the test sequences. If the execution speed is improved, the proposed method can be a very useful method to generate an IVPD at an arbitrary view-point, we believe.