• Title/Summary/Keyword: Interleukin-17

Search Result 235, Processing Time 0.024 seconds

Unique epithelial expression of S100A calcium binding protein A7A in the endometrium at conceptus implantation in pigs

  • Lee, Soohyung;Jang, Hwanhee;Yoo, Inkyu;Han, Jisoo;Jung, Wonchul;Ka, Hakhyun
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.9
    • /
    • pp.1355-1362
    • /
    • 2019
  • Objective: S100A7A, a member of the S100 protein family, is involved in various biological processes, including innate immunity, antimicrobial function, and epithelial tumorigenesis. However, the expression and function of S100A7A in the endometrium during the estrous cycle and pregnancy are not well understood in pigs. Therefore, this study determined the expression and regulation of S100A7A at the maternal-conceptus interface in pigs. Methods: We obtained endometrial tissues from pigs throughout the estrous cycle and pregnancy, conceptus tissues during early pregnancy, and chorioallantoic tissues during midto late pregnancy and analyzed the expression of S100A7A in these tissues. We also determined the effects of steroid hormones, estradiol-$17{\beta}$ ($E_2$) and progesterone, and interleukin-$1{\beta}$ (IL1B) on S100A7A expression in endometrial tissues. Results: We found that S100A7A was expressed in the endometrium during the estrous cycle and pregnancy in a pregnancy status- and stage-dependent manner and was localized to endometrial luminal epithelial (LE) and superficial glandular epithelial cells with strong intensity in LE cells on day 12 of pregnancy. Early stage conceptuses and chorioallantoic tissues from day 30 to term pregnancy also expressed S100A7A. The expression of S100A7A was increased by $E_2$ and IL1B in endometrial tissues. Conclusion: S100A7A was expressed at the maternal-conceptus interface at the initiation of implantation in response to conceptus-derived estrogen and IL1B and could be a unique endometrial epithelial marker for conceptus implantation in pigs. These findings provide an important insight into the understanding of conceptus-endometrial interactions for the successful establishment of pregnancy in pigs.

Sex hormones alter the response of Toll-like receptor 3 to its specific ligand in fallopian tube epithelial cells

  • Zandieh, Zahra;Amjadi, Fatemehsadat;Vakilian, Haghighat;Aflatoonian, Khashayar;Amirchaghmaghi, Elham;Fazeli, Alireza;Aflatoonian, Reza
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.45 no.4
    • /
    • pp.154-162
    • /
    • 2018
  • Objective: The fallopian tubes play a critical role in the early events of fertilization. The rapid innate immune defense is an important part of the fallopian tubes. Toll-like receptor 3 (TLR3), as a part of the innate immune system, plays an important role in detecting viral infections. In this basic and experimental study, the effect of sex hormones on the function of TLR3 in the OE-E6/E7 cell line was investigated. Methods: The functionality of TLR3 in this cell line was evaluated by cytokine measurements (interleukin [IL]-6 and IL-1b) and the effects of sex hormones on TLR3 were tested by an enzyme-linked immunosorbent assay kit. Additionally, TLR3 small interfering RNA (siRNA) and a TLR3 function-blocking antibody were used to confirm our findings. Results: The production of IL-6 significantly increased in the presence of polyinosinic-polycytidylic acid (poly(I:C)) as the TLR3 ligand. Using a TLR3-siRNA-ransfected OE-E6/E7 cell line and function-blocking antibody confirmed that cytokine production was due to TLR3. In addition, 17-${\beta}$ estradiol and progesterone suppressed the production of IL-6 in the presence and absence of poly(I:C). Conclusion: These results imply that sex hormones exerted a suppressive effect on the function of TLR3 in the fallopian tube cell line when different concentrations of sex hormones were present. The current results also suggest that estrogen receptor beta and nuclear progesterone receptor B are likely to mediate the hormonal regulation of TLR3, as these two receptors are the main estrogen and progesterone receptors in OEE6/E7 cell line.

Evaluation of immune responses in dairy cows immunized with an inactivated vaccine for bovine respiratory disease

  • Aganja, Ram Prasad;Seo, Kangseok;Ha, Seungmin;Yi, Young-Joo;Lee, Sang-Myeong
    • Korean Journal of Agricultural Science
    • /
    • v.48 no.2
    • /
    • pp.251-264
    • /
    • 2021
  • Bovine respiratory syncytial virus (BRSV) and bovine viral diarrhea virus (BVDV) are the main viral contributors to bovine respiratory disease (BRD) with high mortality and morbidity. BRD control measures include vaccination that modulates immunological profiles reflected in blood cells, serum, and body secretions, such as milk. This study evaluated the immune responses to an inactivated BRD vaccine in lactating cows reared in a natural environment on a dairy farm. The cows were intramuscularly inoculated with the vaccine, and serum, blood, and milk were collected pre-and post-vaccination. Our study revealed a prominent increase in BRSV-specific antibodies both in serum and milk, while the change in BVDV-specific antibodies was insignificant. Serum interleukin (IL)-1β and IL-6 levels significantly decreased, but this change was not reflected in milk. Evaluation of pattern recognition receptors (PRRs) via RT-qPCR revealed downregulation of nucleotide-binding oligomerization domain 2 (NOD2). The concentrations of BRSV antibodies, BVDV antibodies, IL-2, and IL-17A in serum and milk were strongly correlated, implying a concurrent influence on both body fluids. Thus, immunological factors modulated as a result of vaccination generally measured in serum were reflected in milk, demonstrating the suitability of milk evaluation as an alternative approach for immunological observations. Furthermore, the correlation between BRSV antibodies and NOD2 and that between BVDV antibodies and toll-like receptor (TLR) 2, TLR3, TLR4, and TLR5 imply the possible role of PRRs for the assessment of the immune response developed in immunized cows reared on the farm.

Anti-inflammatory effect of sulforaphane on LPS-stimulated RAW 264.7 cells and ob/ob mice

  • Ranaweera, Sachithra S.;Dissanayake, Chanuri Y.;Natraj, Premkumar;Lee, Young Jae;Han, Chang-Hoon
    • Journal of Veterinary Science
    • /
    • v.21 no.6
    • /
    • pp.91.1-91.15
    • /
    • 2020
  • Background: Sulforaphane (SFN) is an isothiocyanate compound present in cruciferous vegetables. Although the anti-inflammatory effects of SFN have been reported, the precise mechanism related to the inflammatory genes is poorly understood. Objectives: This study examined the relationship between the anti-inflammatory effects of SFN and the differential gene expression pattern in SFN treated ob/ob mice. Methods: Nitric oxide (NO) level was measured using a Griess assay. The inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) expression levels were analyzed by Western blot analysis. Pro-inflammatory cytokines (tumor necrosis factor [TNF]-α, interleukin [IL]-1β, and IL-6) were measured by enzyme-linked immunosorbent assay (ELISA). RNA sequencing analysis was performed to evaluate the differential gene expression in the liver of ob/ob mice. Results: The SFN treatment significantly attenuated the iNOS and COX-2 expression levels and inhibited NO, TNF-α, IL-1β, and IL-6 production in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. RNA sequencing analysis showed that the expression levels of 28 genes related to inflammation were up-regulated (> 2-fold), and six genes were down-regulated (< 0.6-fold) in the control ob/ob mice compared to normal mice. In contrast, the gene expression levels were restored to the normal level by SFN. The protein-protein interaction (PPI) network showed that chemokine ligand (Cxcl14, Ccl1, Ccl3, Ccl4, Ccl17) and chemokine receptor (Ccr3, Cxcr1, Ccr10) were located in close proximity and formed a "functional cluster" in the middle of the network. Conclusions: The overall results suggest that SFN has a potent anti-inflammatory effect by normalizing the expression levels of the genes related to inflammation that were perturbed in ob/ob mice.

Comparison on anti-allergic activities of leaves from Domestic and Chinese species of Cudrania tricuspidata (토종과 중국도입종간 꾸지뽕잎의 항알레르기작용 비교)

  • Kim, Kwang-Yeon;Ha, Mi-Ae;Shin, Yong-Wook
    • The Korea Journal of Herbology
    • /
    • v.34 no.3
    • /
    • pp.9-17
    • /
    • 2019
  • Objectives : This study was performed to compare the effect of two Cudrania tricuspidata cultivars; Sancheong native (CT) and varieties in china(SCT) on immediate hypersensitivity of the anaphylactic type and Ova-induced allergic asthma mouse model by calculating serum cytokines and IgE. Methods : We investigated the free radical scavanging effect and quantify total phenol contents and total flavonoids of two Cudrania tricuspidata cultivars; Sancheong native(CT) and varieties in china(SCT). The sample was extracted by 80% EtOH. To induce the allergic asthma, in the control group and the CT group, mice of each group were sensitized intraperitoneally with ovalbumin (OVA) solution at the 1st, the 7th and the 14th day. After then, sensitization was performed by aerosol allergen challenges with 1% OVA solution intratracheally at the 21th, the 23th, 25th and the 27th day. At the 29th day, the mice were killed and the changes of interferon-${\gamma}$, interleukin-4, 5 and 10, total IgE and OVA-specific IgE in serum were checked. Results : CT inhibited compound 48/80-induced systemic anaphylaxis 90% with a dose of 100 mg/kg body weight at 1 hr before injection of compound 48/80. In the allergic asthma mouse model, IFN-${\gamma}$ was did not increased in the CT and SCT group than that in the control group. IL-4, IL-5, the total IgE and OVA-specific IgE were decreased in the CT group as compared with the control group and these results were statistically significant. Conclusions : Considering the above experimental results, this study showed that Sancheong native cultivar could reduce the allergic reaction.

Matrix metalloproteinases: expression and regulation in the endometrium during the estrous cycle and at the maternal-conceptus interface during pregnancy in pigs

  • Inkyu Yoo;Soohyung Lee;Yugyeong Cheon;Hakhyun Ka
    • Animal Bioscience
    • /
    • v.36 no.8
    • /
    • pp.1167-1179
    • /
    • 2023
  • Objective: Matrix metalloproteinases (MMPs) are a family of endoproteases produced by various tissues and cells and play important roles in angiogenesis, tissue repair, immune response, and endometrial remodeling. However, the expression and function of MMPs in the pig endometrium during the estrous cycle and pregnancy have not been fully elucidated. Thus, we determined the expression, localization, and regulation of MMP2, MMP8, MMP9, MMP12, and MMP13 in the endometrium throughout the estrous cycle and at the maternal-conceptus interface during pregnancy in pigs. Methods: Endometrial tissues during the estrous cycle and pregnancy and conceptus and chorioallantoic tissues during pregnancy were obtained and the expression of MMPs was analyzed. The effects of steroid hormones and cytokines on the expression of MMPs were determined in endometrial explant cultures. Results: Expression levels of MMP12 and MMP13 changed during the estrous cycle, while expression of MMP2, MMP9, MMP12, and MMP13 changed during pregnancy. Expression of MMP2, MMP8, and MMP13 mRNAs was cell type-specific at the maternal-conceptus interface. Gelatin zymography showed that enzymatically active MMP2 was present in endometrial tissues. In endometrial explant cultures, estradiol-17β induced the expression of MMP8 and MMP12, progesterone decreased the expression of MMP12, interleukin-1β increased the expression of MMP2, MMP8, MMP9, and MMP13, and interferon-γ increased the expression of MMP2. Conclusion: These results suggest that MMPs expressed in response to steroids and cytokines play an important role in the establishment and maintenance of pregnancy by regulating endometrial remodeling and processing bioactive molecules in pigs.

MicroRNA-127 promotes antimicrobial ability in porcine alveolar macrophages via S1PR3/TLR signaling pathway

  • Honglei Zhou;Yujia Qian;Jing Liu
    • Journal of Veterinary Science
    • /
    • v.24 no.2
    • /
    • pp.20.1-20.13
    • /
    • 2023
  • Background: As Actinobacillus pleuropneumonniae (APP) infection causes considerable losses in the pig industry, there is a growing need to develop effective therapeutic interventions that leverage host immune defense mechanisms to combat these pathogens. Objectives: To demonstrate the role of microRNA (miR)-127 in controlling bacterial infection against APP. Moreover, to investigate a signaling pathway in macrophages that controls the production of anti-microbial peptides. Methods: Firstly, we evaluated the effect of miR-127 on APP-infected pigs by cell count/enzyme-linked immunosorbent assay (ELISA). Then the impact of miR-127 on immune cells was detected. The cytokines tumor necrosis factor (TNF)-α and interleukin (IL)-6 were evaluated by ELISA. The expression of cytokines (anti-microbial peptides [AMPs]) was assessed using quantitative polymerase chain reaction. The expression level of IL-6, TNF-α and p-P65 were analyzed by western blot. The expression of p65 in the immune cells was investigated by immunofluorescence. Results: miR-127 showed a protective effect on APP-infected macrophage. Moreover, the protective effect might depend on its regulation of macrophage bactericidal activity and the generation of IL-22, IL-17 and AMPs by targeting sphingosine-1-phosphate receptor3 (SIPR3), the element involved in the Toll-like receptor (TLR) cascades. Conclusions: Together, we identify that miR-127 is a regulator of S1PR3 and then regulates TLR/nuclear factor-κB signaling in macrophages with anti-bacterial acticity, and it might be a potential target for treating inflammatory diseases caused by APP.

Evaluation of the Effects of Euglena gracilis on Enhancing Immune Responses in RAW264.7 Cells and a Cyclophosphamide-Induced Mouse Model

  • Kyeong Ah Jo;Kyeong Jin Kim;Soo-yeon Park;Jin-Young Jeon;Ji Eun Hwang;Ji Yeon Kim
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.4
    • /
    • pp.493-499
    • /
    • 2023
  • In this study we evaluated the immune-enhancing effects of β-glucan, the main component of Euglena gracilis (Euglena), and Euglena on inflammatory factor expression in RAW264.7 macrophages and ICR mice with cyclophosphamide-induced immunosuppression. Macrophages were treated with β-glucan or Euglena for 48 h. The β-glucan and Euglena groups exhibited higher levels of inducible nitric oxide synthase, nitric oxide, and tumor necrosis factor (TNF)-α than the control (vehicle alone) group. Animals were fed saline and β-glucan (400 mg/kg body weight (B.W.)) or Euglena (400 or 800 mg/kg B.W.) for 19 days, and on days 17-19, cyclophosphamide (CCP, 80 mg/kg B.W.) was administered to induce immunosuppression in the ICR mouse model. CCP reduced the body weight, spleen index, and cytokine expression of the mice. To measure cytokine and receptor expression, splenocytes were treated with concanavalin A (ConA) or lipopolysaccharide (LPS) as a mitogen for 24 h. In vivo, ConA stimulation significantly upregulated the expression of interferon (IFN)-γ, interleukin (IL)-10, IL-12 receptor β1, IL-1β, and IL-2 in splenocytes from the β-glucan- or Euglena-treated groups compared with those in the splenocytes from the CCP-treated group; LPS stimulation increased the levels of the cytokines TNF-α, IL-1β, and IL-6 in splenocytes from the β-glucan- or Euglena- treated groups compared with those from the CCP-treated group, but most of these differences were not significant. These results demonstrate the effect of Euglena in ameliorating macrophages and immunosuppression in CCP-treated mice. Thus, Euglena has the potential to enhance macrophage- and splenocyte- mediated immune-stimulating responses.

Effect of fermented sarco oyster extract on age induced sarcopenia muscle repair by modulating regulatory T cells

  • Kyung-A Byun;Seyeon Oh;Sosorburam Batsukh;Kyoung-Min Rheu;Bae-Jin Lee;Kuk Hui Son;Kyunghee Byun
    • Fisheries and Aquatic Sciences
    • /
    • v.26 no.6
    • /
    • pp.406-422
    • /
    • 2023
  • Sarcopenia is an age-related, progressive skeletal muscle disorder involving the loss of muscle mass and strength. Previous studies have shown that γ-aminobutyric acid (GABA) from fermented oysters aids in regulatory T cells (Tregs) cell expansion and function by enhancing autophagy, and concomitantly mediate muscle regeneration by modulating muscle inflammation and satellite cell function. The fermentation process of oysters not only increases the GABA content but also enhances the content of branched amino acids and free amino acids that aid the level of protein absorption and muscle strength, mass, and repair. In this study, the effect of GABA-enriched fermented sarco oyster extract (FSO) on reduced muscle mass and functions via Treg modulation and enhanced autophagy in aged mice was investigated. Results showed that FSO enhanced the expression of autophagy markers (autophagy-related gene 5 [ATG5] and GABA receptor-associated protein [GABARAP]), forkhead box protein 3 (FoxP3) expression, and levels of anti-inflammatory cytokines (interleukin [IL]-10 and transforming growth factor [TGF]-β) secreted by Tregs while reducing pro-inflammatory cytokine levels (IL-17A and interferon [IFN]-γ). Furthermore, FSO increased the expression of IL-33 and its receptor IL-1 receptor-like 1 (ST2); well-known signaling pathways that increase amphiregulin (Areg) secretion and expression of myogenesis markers (myogenic factor 5, myoblast determination protein 1, and myogenin). Muscle mass and function were also enhanced via FSO. Overall, the current study suggests that FSO increased autophagy, which enhanced Treg accumulation and function, decreased muscle inflammation, and increased satellite cell function for muscle regeneration and therefore could decrease the loss of muscle mass and function with aging.

Functional Properties of Peptides in Mixed Whey and Soybean Extracts after Fermentation by Lactic Acid Bacteria

  • Dong-Gyu Yoo;Yu-Bin Jeon;Se-Hui Moon;Ha-Neul Kim;Ji-Won Lee;Cheol-Hyun Kim
    • Journal of Dairy Science and Biotechnology
    • /
    • v.41 no.3
    • /
    • pp.113-125
    • /
    • 2023
  • In this study, we explored the synergistic effects of whey protein concentrate (WPC) and soybean protein components after fermentation with lactic acid bacteria isolated from kimchi, and identified several peptides with desirable physiological functions, proteolysis, and immune effects. Antioxidant activity was determined using 2,2'-azino-bis-3-ethylbenzothiazoline-6-sulphonic acid, 1,1-diphenyl-2-picrylhydrazyl, ferric-reducing antioxidant power, and hydroxyl radical scavenging assays, followed by cross-validation of the four antioxidant activities. These assays revealed that samples with a 8:2 and 9:1 whey to soy ratio possessed higher antioxidant activity than the control samples. Antibacterial potency testing revealed high antibacterial activity in the 9:1 and 8:2 samples. Cytotoxicity testing of samples using 3-(4, 5-dimethyl thiazol-2-yl)-2, 5-diphenyl tetrazolium bromide revealed that only the 10:0, 1:9, and 0:10 samples had <80% viable cells, indicating no significant cytotoxicity. Nitric oxide (NO) assays revealed that NO expression was reduced in 8:2, 5:5, and 0:10 protein ratio fermentations, indicating low inflammatory reaction stimulatory potential. Cytokine expression was confirmed using an enzyme-linked immunosorbent assay kit. The 8:2 sample had the lowest inflammatory cytokine (interleukin [IL]-1α, IL-6, and tumor necrosis factor-α) levels compared with the lipopolysaccharide-treated group. Amino acid profiling of the 8:2 sample identified 17 amino acids. These results suggest that inoculating and fermenting Lactobacillus plantarum DK203 and Lactobacillus paracasei DK209 with an 8:2 mixture of WPC and soybean protein releases bioactive peptides with excellent anti-inflammatory and antioxidant properties, making them suitable for functional food development.