• Title/Summary/Keyword: Interleukin-1

Search Result 2,332, Processing Time 0.026 seconds

Effects of 14 Chung-bu Medicinal Materials Described in the Dongui Bogam on Inflammatory Cytokines Production in HaCaT Keratinocytes (피부각질형성세포에서 동의보감 충부약재 14 종이 염증성 사이토카인 생성에 미치는 영향)

  • Park, Gunhyuk;Moon, Byeong Cheol;Lim, Hye-Sun
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.46 no.2
    • /
    • pp.195-204
    • /
    • 2020
  • The purpose of this study was to investigate the effects of 14 Chung-bu medicinal materials described in the Dongui Bogam on inflammatory cytokine production in HaCaT human keratinocyte cells. In order to confirm this possibility, we screened inhibition activity of 17 cytokines using Bio-Plex ProTM Human Cytokine 17-plex assay in HaCaT cell lines. Of the 14 Chung-bu medicinal materials, Holotrichia (Ho) and Scorpio (Sc) exerted inhibitory effects on interleukin (IL)-5 production; Ho, Mantidis Ootheca (MO), and Hirudo (Hi) exerted inhibitory effects on IL-6 production; Ho, MO, Lumbricus (Lu), Hi, and Meretricis Concha (MC) showed significant inhibitory effects on IL-8 production; Gecko (Ge), Bombycis Faeces (BF), Cicadidae Periostracum (CP), and MC showed significant inhibitory effects on IL-13 production; and Testudinis Chinemis Plastrum et Carapax (TCPC), BF, and Lu exerted significant inhibitory effects on MIP-1β production. Results indicated that the Chung-bu medicinal materials might be a good candicate as potential anti-inflammatory agents for inhibition of skin inflammation. However, further investigations on these materials, including mechanistic studies, should be carried out to validated the effects in human skin equivalent models of dermatitis.

Black ginseng-enriched Chong-Myung-Tang extracts improve spatial learning behavior in rats and elicit anti-inflammatory effects in vitro

  • Saba, Evelyn;Jeong, Da-Hye;Roh, Seong-Soo;Kim, Seung-Hyung;Kim, Sung-Dae;Kim, Hyun-Kyoung;Rhee, Man-Hee
    • Journal of Ginseng Research
    • /
    • v.41 no.2
    • /
    • pp.151-158
    • /
    • 2017
  • Background: Chong-Myung-Tang (CMT) extract is widely used in Korea as a traditional herbal tonic for increasing memory capacity in high-school students and also for numerous body ailments since centuries. The use of CMT to improve the learning capacity has been attributed to various plant constituents, especially black ginseng, in it. Therefore, in this study, we have first investigated whether black ginseng-enriched CMT extracts affected spatial learning using the Morris water maze (MWM) test. Their molecular mechanism of action underlying improvement of learning and memory was examined in vitro. Methods: We used two types of black ginseng-enriched CMT extracts, designated as CM-1 and CM-2, and evaluated their efficacy in the MWM test for spatial learning behavior and their anti-inflammatory effects in BV2 microglial cells. Results: Our results show that both black ginseng-enriched CMT extracts improved the learning behavior in scopolamine-induced impairment in the water maze test. Moreover, these extracts also inhibited nitric oxide production in BV2 cells, with significant suppression of expression of proinflammatory cytokines, especially inducible nitric oxide synthase, cyclooxygenase-2, and $interleukin-1{\beta}$. The protein expression of mitogen-activated protein kinase and nuclear $factor-{\kappa}B$ pathway factors was also diminished by black ginseng-enriched CMT extracts, indicating that it not only improves the memory impairment, but also acts a potent anti-inflammatory agent for neuroinflammatory diseases. Conclusion: Our research for the first time provides the scientific evidence that consumption of black ginseng-enriched CMT extract as a brain tonic improves memory impairment. Thus, our study results can be taken as a reference for future neurobehavioral studies.

Anti-inflammatory Effect of Polysaccharide Derived from Commercial Kanjang on Mast Cells (비만세포에서 시판 간장 유래 다당류의 항염증 효과)

  • Ko, Yu-Jin;Lee, Gyeong-Ran;Ryu, Chung-Ho
    • Journal of Life Science
    • /
    • v.23 no.4
    • /
    • pp.569-577
    • /
    • 2013
  • Soy sauce is a traditional fermented seasoning in several oriental countries, such as Korea and Japan, and recently it has been reported to have biological activities. In Korean soy sauce, soybeans and wheat are the two main raw materials. Polysaccharides that originate from the cell wall of soybeans are resistant to enzymatic hydrolysis. These polysaccharides remain in the soy sauce even after fermentation and are termed Kanjang polysaccharides (KPS). In this study, polysaccharides were obtained from dialysate of different soy sauces labeled as A~T and manufactured by fermentation or the acid-hydrolyzate method. We investigated anti-inflammatory activities by examining the effects of these KPS on proinflammatory cytokine release and mRNA expression in mast cells. Histamine and ${\beta}$-hexosaminidase release were strongly decreased by the KPS treatment in RBL-2H3 cells. Treatment with KPS clearly reduced mRNA expression and the release of the proinflammatory cytokines interleukin (IL)-6, IL-8, and tumor necrosis factor-alpha (TNF-${\alpha}$) in PMACI-stimulated HMC-1 cells. In particular, KPS derived from fermented Kanjang products showed a significant anti-inflammation effect on mast cells compared to the acid-hydrolyzed Kanjang products. This study suggests that KPS appear to be effective in suppressing allergic inflammatory reactions.

Anti-Inflammatory Effect of Sedum takesimense Nakai Water Extract in RAW 264.7 Cells (섬기린초 물 추출물의 마우스 대식세포에서 항염증 효능)

  • Jang, Ji Hun;Jung, Ho Kyung;Ko, Jae Hyung;Sim, Mi Ok;Woo, Kyeong Wan;Kim, Tae Muk;Lee, Ki Ho;Ahn, Byeong Kwan;Cho, Hyun Woo;Cho, Jung Hee;Jung, Won Seok
    • Korean Journal of Medicinal Crop Science
    • /
    • v.24 no.3
    • /
    • pp.228-236
    • /
    • 2016
  • Background: Sedum takesimense Nakai has been used as folk medicine in Korea. The present study aimed to determine the biological activity of S. takesimense by investigating the anti-inflammatory effects of S. takesimense water extract (SKLC) on the lipopolysaccharide-induced inflammatory response in RAW 264.7 cells. Methods and Results: Cytotoxicity of SKLC on RAW 264.7 cells was determinded by performing MTS assay was found to have no cytotoxic effect on RAW 264.7 cells at a concentration range of $62-500{\mu}g/m{\ell}$. Further, pretreatment of SKLC inhibited lipopolysaccharide-induced nitric oxide (NO) production in a dose-dependent manner. To determined the inhibitory mechanisms of SKLC on inflammatory mediators, we assessed the inducible nitric oxide synthase (iNOS) and cyclooxygnease-2 (COX-2) pathways. The activities of these pathways were decreased in a dose-dependent manner by SKLC. The production of tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$), interleukin $(IL)-1{\beta}$, and IL-6 were also reduced. Conclusions: These results suggest that the down regulation of iNOS, COX-2, TNF-${\alpha}$, IL-$1{\beta}$, and IL-6 expression by SKLC are mediated by the down regulation of nuclear factor-${\kappa}B$ (NF-${\kappa}B$) activity, a transcription factor necessary for pro-inflammatory mediators. This might be the mechanism underlying the anti-inflammatory effects of SKLC.

Inhibition of inflammatory responses in lipopolysaccharide-induced RAW 264.7 cells by Pinus densiflora root extract

  • Lee, Jae-Eun;Lee, Eun-Ho;Park, Hye-Jin;Kim, Ye-Jin;Jung, Hee-Young;Ahn, Dong-Hyun;Cho, Young-Je
    • Journal of Applied Biological Chemistry
    • /
    • v.61 no.3
    • /
    • pp.275-281
    • /
    • 2018
  • Pinus densiflora root (PDR) is used as a medicinal plant. In this study, we investigated whether the PDR extract has anti-inflammatory activities. Cell viability assays showed that the extract was not toxic toward RAW 264.7 cells at concentrations up to $10{\mu}g/mL$. At $10{\mu}g/mL$, the extract decreased nitric oxide (NO) content to 40% of the control level. The protein expression of inducible nitric oxide synthase (iNOS), which generates NO, decreased with increasing concentrations of the extract. Prostaglandin $E_2$ ($PGE_2$) levels were significantly inhibited by over 50% in the presence of $10{\mu}g/mL$ of the extract. The protein expression of cyclooxygenase-2 (COX-2), which generates $PGE_2$, decreased with increasing concentrations of the extract. Proinflammatory cytokines, such as tumor necrosis factor-alpha ($TNF-{\alpha}$), interleukin-6 (IL-6), and $IL-1{\beta}$, were detected in RAW 264.7 cells after lipopolysaccharide (LPS) treatment. The extract did not affect the levels of $TNF-{\alpha}$ and IL-6, but it significantly inhibited the level of $IL-1{\beta}$. It also completely inhibited the transcription of nuclear factor-kappaB ($NF-{\kappa}B$). These results indicate that the PDR extract reduces inflammatory response-related proteins, such as NO, $PGE_2$, iNOS, and COX-2, in LPS-induced RAW 264.7 cells via the regulation of $NF-{\kappa}B$. Consequently, we have provided a mechanism to explain the anti-inflammatory effect of the PDR extract; that is, it exerts such an effect by regulating $NF-{\kappa}B$. The PDR extract can therefore be considered as an effective anti-inflammatory agent.

Effects of Macrolide and Corticosteroid in Neutrophilic Asthma Mouse Model

  • An, Tai Joon;Rhee, Chin Kook;Kim, Ji Hye;Lee, Young Rong;Chon, Jin Young;Park, Chan Kwon;Yoon, Hyoung Kyu
    • Tuberculosis and Respiratory Diseases
    • /
    • v.81 no.1
    • /
    • pp.80-87
    • /
    • 2018
  • Background: Asthma is a disease of chronic airway inflammation with heterogeneous features. Neutrophilic asthma is corticosteroid-insensitive asthma related to absence or suppression of $T_H2$ process and increased $T_H1$ and/or $T_H17$ process. Macrolides are immunomodulatory drug that reduce airway inflammation, but their role in asthma is not fully known. The purpose of this study was to evaluate the role of macrolides in neutrophilic asthma and compare their effects with those of corticosteroids. Methods: C57BL/6 female mice were sensitized with ovalbumin (OVA) and lipopolysaccharides (LPS). Clarithromycin (CAM) and/or dexamethasone (DXM) were administered at days 14, 15, 21, 22, and 23. At day 24, the mice were sacrificed. Results: Airway resistance in the OVA+LPS exposed mice was elevated but was more attenuated after treatment with CAM+DXM compared with the monotherapy group (p<0.05 and p<0.01). In bronchoalveolar lavage fluid study, total cells and neutrophil counts in OVA+LPS mice were elevated but decreased after CAM+DXM treatment. In hematoxylin and eosin stain, the CAM+DXM-treated group showed less inflammation additively than the monotherapy group. There was less total protein, interleukin 17 (IL-17), interferon ${\gamma}$, and tumor necrosis factor ${\alpha}$ in the CAM+DXM group than in the monotherapy group (p<0.001, p<0.05, and p<0.001). More histone deacetylase 2 (HDAC2) activity was recovered in the DXM and CAM+DXM challenged groups than in the control group (p<0.05). Conclusion: Decreased IL-17 and recovered relative HDAC2 activity correlated with airway resistance and inflammation in a neutrophilic asthma mouse model. This result suggests macrolides as a potential corticosteroid-sparing agent in neutrophilic asthma.

Effect of Dietary Benzoic Acid on Beneficial Microflora and Immune Response in the Intestine of Weaning Pigs (사료내 벤조산 첨가가 이유돼지의 장내 미생물 균총 및 면역체계에 미치는 영향)

  • Oh, Hee Kyung;Choi, Young Hwan;Jin, Ying Hai;Kim, Yoo Yong
    • Journal of Life Science
    • /
    • v.22 no.10
    • /
    • pp.1307-1315
    • /
    • 2012
  • We evaluated the effect of dietary supplements with benzoic acid on intestinal beneficial bacteria concentration and immune response of weaning pigs. Supplementation with benzoic acid at 0.5% or control diet for 35 days resulted in a higher Lactobacillus casei concentration in the cecum. Supplementation with benzoic acid at 0.5% increased concentration of L. plantarum in the cecum. Pigs with the control diet and 0.5% benzoic acid had significantly increased concentration of B. subtillis in the cecum compared to the antibiotic group, while the concentration of B. subtillis in the rectum increased in pigs given 0.3 and 0.5% benzoic acid (p<0.05). Compared with the control group, the level of interleukin-$1{\beta}$ mRNA showed a significant decrease in the proximal small intestine in pigs fed diets supplemented with benzoic acid at 0.5% or antibiotic. Feeding 0.5% benzoic acid resulted in a marked reduction in the expression of IL-6 mRNA in the middle small intestine (p<0.05). Supplementation with benzoic acid at 0.5% or antibiotic resulted in a lower level of tumor necrosis factor-mRNA in the middle intestine. Up to 0.5% benzoic acid may be included in weaning diets for improvement of intestinal beneficial bacteria, thus modulating genes of pro-inflammatory cytokines in the gastrointestinal tract.

Abrogation of the Circadian Nuclear Receptor REV-ERBα Exacerbates 6-Hydroxydopamine-Induced Dopaminergic Neurodegeneration

  • Kim, Jeongah;Jang, Sangwon;Choi, Mijung;Chung, Sooyoung;Choe, Youngshik;Choe, Han Kyoung;Son, Gi Hoon;Rhee, Kunsoo;Kim, Kyungjin
    • Molecules and Cells
    • /
    • v.41 no.8
    • /
    • pp.742-752
    • /
    • 2018
  • Parkinson's disease (PD) is a neurodegenerative disease characterized by progressive degeneration of dopaminergic (DAergic) neurons, particularly in the substantia nigra (SN). Although circadian dysfunction has been suggested as one of the pathophysiological risk factors for PD, the exact molecular link between the circadian clock and PD remains largely unclear. We have recently demonstrated that $REV-ERB{\alpha}$, a circadian nuclear receptor, serves as a key molecular link between the circadian and DAergic systems. It competitively cooperates with NURR1, another nuclear receptor required for the optimal development and function of DA neurons, to control DAergic gene transcription. Considering our previous findings, we hypothesize that $REV-ERB{\alpha}$ may have a role in the onset and/or progression of PD. In the present study, we therefore aimed to elucidate whether genetic abrogation of $REV-ERB{\alpha}$ affects PD-related phenotypes in a mouse model of PD produced by a unilateral injection of 6-hydroxydopamine (6-OHDA) into the dorsal striatum. $REV-ERB{\alpha}$ deficiency significantly exacerbated 6-OHDA-induced motor deficits as well as DAergic neuronal loss in the vertebral midbrain including the SN and the ventral tegmental area. The exacerbated DAergic degeneration likely involves neuroinflammation-mediated neurotoxicity. The $REV-erb{\alpha}$ knockout mice showed prolonged microglial activation in the SN along with the over-production of interleukin $1{\beta}$, a pro-inflammatory cytokine, in response to 6-OHDA. In conclusion, the present study demonstrates for the first time that genetic abrogation of $REV-ERB{\alpha}$ can increase vulnerability of DAergic neurons to neurotoxic insults, such as 6-OHDA, thereby implying that its normal function may be beneficial for maintaining DAergic neuron populations during PD progression.

Anti-inflammatory Effects of Ethanol Extract from Bark of Acer barbinerve Maxim (청시닥나무 수피 에탄올 추출물의 항염증 효과)

  • Lee, Han-Na;Kim, Jin-Kyu;Kwon, Gyoo-Taik;Shim, Jae-Hoon;Kim, Jong-Dai;YoonPark, Jung-Han
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.41 no.9
    • /
    • pp.1242-1247
    • /
    • 2012
  • Acer barbinerve Maxim belongs to the Aceraceae tree family and is often consumed as an Oriental medicine. In this study, we investigated whether or not ethanol extract from the bark of A. barbinerve Max. (EBA) inhibits lipopolysaccharide (LPS)-induced inflammatory responses in Raw264.7 macrophages. EBA was fractionated using n-hexane, $CH_2Cl_2$, ethyl acetate (EtOAc), and water. Raw264.7 cells were treated with 20 ${\mu}g/mL$ of EBA and the EBA fractions. EBA inhibited LPS-induced nitric oxide (NO) production. Among the three fractions, EtOAc fraction of EBA (EFEBA) was the most effective in inhibiting LPS-induced NO production without significant cytotoxicity in Raw264.7 cells. EFEBA futher reduced LPS-induced expression of inducible NO synthase (iNOS) proteins and its corresponding mRNA. Additionally, EFEBA decreased the mRNA levels of interleukin (IL)-6, IL-$1{\beta}$, and tumor necrosis factor-${\alpha}$ in LPS-treated Raw264.7 cells. Lastly, EFEBA inhibited LPS-induced degradation of the inhibitor of kappaBalpha ($I{\kappa}B{\alpha}$) as well as phosphorylation of p65 nuclear factor-${\kappa}B$ (NF-${\kappa}B$). These results indicate that EFEBA exhibits strong anti-inflammatory effects and can be developed as a potential anti-inflammatory agent.

Saprolegnia parasitica Isolated from Rainbow Trout in Korea: Characterization, Anti-Saprolegnia Activity and Host Pathogen Interaction in Zebrafish Disease Model

  • Shin, Sangyeop;Kulatunga, D.C.M.;Dananjaya, S.H.S.;Nikapitiya, Chamilani;Lee, Jehee;De Zoysa, Mahanama
    • Mycobiology
    • /
    • v.45 no.4
    • /
    • pp.297-311
    • /
    • 2017
  • Saprolegniasis is one of the most devastating oomycete diseases in freshwater fish which is caused by species in the genus Saprolegnia including Saprolegnia parasitica. In this study, we isolated the strain of S. parasitica from diseased rainbow trout in Korea. Morphological and molecular based identification confirmed that isolated oomycete belongs to the member of S. parasitica, supported by its typical features including cotton-like mycelium, zoospores and phylogenetic analysis with internal transcribed spacer region. Pathogenicity of isolated S. parasitica was developed in embryo, juvenile, and adult zebrafish as a disease model. Host-pathogen interaction in adult zebrafish was investigated at transcriptional level. Upon infection with S. parasitica, pathogen/antigen recognition and signaling (TLR2, TLR4b, TLR5b, NOD1, and major histocompatibility complex class I), pro/anti-inflammatory cytokines (interleukin $[IL]-1{\beta}$, tumor necrosis factor ${\alpha}$, IL-6, IL-8, interferon ${\gamma}$, IL-12, and IL-10), matrix metalloproteinase (MMP9 and MMP13), cell surface molecules ($CD8^+$ and $CD4^+$) and antioxidant enzymes (superoxide dismutase, catalase) related genes were differentially modulated at 3- and 12-hr post infection. As an anti-Saprolegnia agent, plant based lawsone was applied to investigate on the susceptibility of S. parasitica showing the minimum inhibitory concentration and percentage inhibition of radial growth as $200{\mu}g/mL$ and 31.8%, respectively. Moreover, natural lawsone changed the membrane permeability of S. parasitica mycelium and caused irreversible damage and disintegration to the cellular membranes of S. parasitica. Transcriptional responses of the genes of S. parasitica mycelium exposed to lawsone were altered, indicating that lawsone could be a potential anti-S. parasitica agent for controlling S. parasitica infection.