• Title/Summary/Keyword: Interleukin-1

Search Result 2,345, Processing Time 0.035 seconds

Suppression Effects of Sopunghwalhyeol-tang(Shufenghuoxie-tang) on the Monosodium Iodoacetate-induced Osteoarthritis in Rats (소풍활혈탕(疎風活血湯)이 Monosodium Iodoacetate로 유발한 흰쥐의 골관절염 억제에 미치는 영향)

  • Kim, Dae-Hyoung;Jeong, Su-Hyeon;Seo, Il-Bok;Kim, Soon-Joong
    • Journal of Korean Medicine Rehabilitation
    • /
    • v.21 no.1
    • /
    • pp.57-77
    • /
    • 2011
  • Objectives : This study was to investigate the suppression effects of Sopunghwalhyeol-tang(Shufenghuoxie-tang) on the monosodium iodoacetate-induced osteoarthritis in rats. Methods : Arthritis was induced by injection of monosodium iodoacetate(0.5 mg) into the both knee joints of rats. Arthritic rats were divided into control(n=8) and treated(n=8) group. Control group was taken distilled water for 20 days. Treated group was taken extracts of Sopunghwalhyeol-tang(Shufenghuoxie-tang) by oraly for same duration. Normal group(n=8) was injected with normal saline and was taken distilled water for 20 days. Macroscopic examination and histopathological study on articular cartilage of knee joint were operated at 20 days after injection. Proteoglycan(PG) content of articular cartilages of knee joint was represented by safranine O staining, was measured at 20 days after injection. Tumor necrosis $factor-{\alpha}(TNF-{\alpha})$, $interleukin-1{\beta}(IL-1{\beta})$, in synovial fluid were measured with enzyme-linked immuno sorbent assay(ELISA) kit at 20 days after injection. Immunohistochemical staining of cyclo-oxygenase-2(COX-2), inducible nitric oxide synthase(iNOS) in knee joints were observed at 20 days after injection. Results : 1. Lymphocytes in peripheral blood the treated group was significantly decreased compared with the control group. 2. PG content in articular cartilage of the treated group was significantly increased compared with the control group. 3. Histopathologically, osteoarthritic scores of the treated group was significantly decreased compared with the control group. 4. $TNF-{\alpha}$ content in synovial fluid of the treated group was significantly decreased compared with the control group. 5. COX-2 revelation index in chondrocytes and synovial membrane of the treated group was significantly decreased compared with the control group. 6. Matrix metalloproteinase-3(MMP-3) revelation index in chondrocytes and synovial membrane of the treated group was significantly decreased compared with the control group. Conclusions : On the basis of these results, we concluded that Sopunghwalhyeol-tang(Shufenghuoxie-tang) has inhibiting effects on the $TNF-{\alpha}$, COX-2 and MMP-3 secretion of chondrocytes and synovial membrane in Monosodium Iodoacetate-induced osteoarthritis model of rats.

Inhibition of Inflammatory-cytokines Production and Prostaglandin E2 Activity by Puerariae Radix Extracts (갈근 추출물에 의한 염증성 Cytokine 생성 억제 및 Prostaglandin E2 활성 저해에 관한 연구)

  • Kim, Si-Na;Kim, Hee-Seok;Nam, Gyeong-Sug;Hwang, Sung-Wan;Hwang, Sung-Yeoun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.35 no.1
    • /
    • pp.28-34
    • /
    • 2006
  • The ethanol extracts of Puerariae Radix inhibited cyclooxygenase-2 (COX-2) activity in bone marrow derived mast cells (BMMC). COX-2 is responsible for the production of large amounts of proinflammatory prostaglandins (PGs) at the inflammatory site. We have investigated the anti-inflammatory effect of ethyl acetate fraction from $70\%$ ethanol extract of Puerariae Radix (EPR), and attempted acetic acid induced writhing to verify the analgesic effect. Inflammation was induced by interleukin-1 (IL-1), tumor necrosis factor-a (TNF-a), $inteferon-\gamma$ $(IFN-\gamma)$ and lipopolysaccharide (LPS). EPR showed strong inhibitory efficacy against cytokine-induced proteoglycan degradation, prostaglandin $E_2\;(PGE_2)$ production, nitric oxide (NO) production, and matrix-metalloproteinases (MMPs) expression in mouse macrophage and rabbit articular chondrocyte. In the writhing test, EPR $(200\~400\;mg/kg)$ exhibited a dose-dependent inhibition of writhing. The results indicate that EPR have anti-inflammatory and analgesic activities, and could be a good herbal medicine candidate for treating of osteoarthritis (OA).

Nuclear Transfer using Human CD59 and IL-18BP Double Transgenic Fetal Fibroblasts in Miniature Pigs

  • Ryu, Junghyun;Kim, Minjeong;Ahn, Jin Seop;Ahn, Kwang Sung;Shim, Hosup
    • Journal of Embryo Transfer
    • /
    • v.31 no.1
    • /
    • pp.1-7
    • /
    • 2016
  • Xenotransplantation involves multiple steps of immune rejection. The present study was designed to produce nuclear transfer embryos, prior to the production of transgenic pigs, using fibroblasts carrying transgenes human complement regulatory protein hCD59 and interleukin-18 binding protein (hIL-18BP) to reduce hyperacute rejection (HAR) and cellular rejection in pig-to-human xenotransplantation. In addition to the hCD59-mediated reduction of HAR, hIL-18BP may prevent cellular rejection by inhibiting the activation of natural killer cells, activated T-cell proliferation, and induction of $IFN-{\gamma}$. Transgene construct including hCD59 and ILI-18BP was introduced into miniature pig fetal fibroblasts. After antibiotic selection of double transgenic fibroblasts, integration of the transgene was screened by PCR, and the transgene expression was confirmed by RT-PCR. Treatment of human serum did not affect the survival of double-transgenic fibroblasts, whereas the treatment significantly reduced the survival of non-transgenic fibroblasts (p<0.01), suggesting alleviation of HAR. Among 337 reconstituted oocytes produced by nuclear transfer using the double transgenic fibroblasts, 28 (15.3%) developed to the blastocyst stage. Analysis of individual embryos indicated that 53.6% (15/28) of embryos contained the transgene. The result of the present study demonstrates the resistance of hCD59 and IL-18BP double-transgenic fibroblasts against HAR, and the usefulness of the transgenic approach may be predicted by RT-PCR and cytolytic assessment prior to actual production of transgenic pigs. Further study on the transfer of these embryos to surrogates may produce transgenic clone miniature pigs expressing hCD59 and hIL-18BP for xenotransplantation.

Anti-inflammatory activity of a sulfated polysaccharide isolated from an enzymatic digest of brown seaweed Sargassum horneri in RAW 264.7 cells

  • Sanjeewa, Kalu Kapuge Asanka;Fernando, Ilekkuttige Priyan Shanura;Kim, Eun-A;Ahn, Ginnae;Jee, Youngheun;Jeon, You-Jin
    • Nutrition Research and Practice
    • /
    • v.11 no.1
    • /
    • pp.3-10
    • /
    • 2017
  • BACKGROUND/OBJECTIVES: Sargassum horneri is an edible brown alga that grows in the subtidal zone as an annual species along the coasts of South Korea, China, and Japan. Recently, an extreme amount of S. horneri moved into the coasts of Jeju Island from the east coast of China, which made huge economic and environmental loss to the Jeju Island. Thus, utilization of this biomass becomes a big issue with the local authorities. Therefore, the present study was performed to evaluate the anti-inflammatory potential of crude polysaccharides (CPs) extracted from S. horneri China strain in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. MATERIALS/METHODS: CPs were precipitated from S. horneri digests prepared by enzyme assistant extraction using four food-grade enzymes (AMG, Celluclast, Viscozyme, and Alcalase). The production levels of nitric oxide (NO) and pro-inflammatory cytokines, including tumor necrosis factor (TNF)-${\alpha}$ and interleukin (IL)-$1{\beta}$ were measured by Griess assay and enzyme-linked immunosorbent assay, respectively. The levels of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), nuclear factor (NF)-${\kappa}B$, and mitogen-activated protein kinases (MAPKs) were measured by using western blot. The IR spectrums of the CPs were recorded using a fourier transform infrared spectroscopy (FT-IR) spectrometer. RESULTS: The polysaccharides from the Celluclast enzyme digest (CCP) showed the highest inhibition of NO production in LPS-stimulated RAW 264.7 cells ($IC_{50}$ value: $95.7{\mu}g/mL$). Also, CCP dose-dependently down-regulated the protein expression levels of iNOS and COX-2 as well as the production of inflammatory cytokines, including TNF-${\alpha}$ and IL-$1{\beta}$, compared to the only LPS-treated cells. In addition, CCP inhibited the activation of NF-${\kappa}B$ p50 and p65 and the phosphorylation of MAPKs, including p38 and extracellular signal-regulated kinase, in LPS-stimulated RAW 264.7 cells. Furthermore, FT-IR analysis showed that the FT-IR spectrum of CCP is similar to that of commercial fucoidan. CONCLUSIONS: Our results suggest that CCP has anti-inflammatory activities and is a potential candidate for the formulation of a functional food ingredient or/and drug to treat inflammatory diseases.

Effects of soybean extracts fermented with Lactic acid bacteria on immune system activity (유산균을 이용한 대두 발효 추출물이 면역계 활성에 미치는 영향)

  • Park, Byung-Doo;Kim, Hye-Ja
    • Journal of Society of Preventive Korean Medicine
    • /
    • v.16 no.3
    • /
    • pp.139-153
    • /
    • 2012
  • Objectives : NK cells are spontaneously cytotoxic lymphocytes. These are not only important parts in the first line of defence against bacterial and viral infections of outside, but they may also play a critical role in chronic viral diseases. NK cells kill their targets spontaneously, without the need for prior sensitization and class I MHC restriction by the regulation of cytolytic functions and secretion of a variety of cytokines, such as interleukin-12(IL-12), MCP-1, IL-6, TNF-${\alpha}$, IFN-${\gamma}$. In addition, macrophage and NK cells cooperate through the production of cell mediates. These cooperation and modulation are one of major factors to prevent for evading immune surveillance of cancer. Hence, it could be assumed that if any candidate to enhance activities of macrophage and NK cell, it is considered as a potentially useful agents against cancer. Methods : In our study, to investigate effect of fermented soybean extracts by Lactic acid bacteria (SFE, soybean fermented extracts) work on intestinal immune cell to maintain general immune modulating and anti-cancer activity. We analyzed NK cytotoxicity assay and gene expressions of cytokine related with macrophage and NK cell activity. Results : In vitro experiment, SFE was verified as safety material for cell toxicicty to tumor cell strain without any toxicity of tumor growth inhibition and various cell strain. Effects of macrophage activity stimulating directly by SFE measured induced cytokine. The studies showed that IL-12 production by stimulation of SFE depended on concentration from 0.16mg/mL to 0.63mg/mL with non toxicity to cell, and it was the best activity at 0.63mg/mL. Besides, the effective concentration of SFE producing TNF-${\alpha}$ is similar to IL-12, but it was the best activity at 1.25mg/mL. The level of MCP-1, IL-6 and IFN-${\gamma}$ depended on concentration from 0.16mg/mL to 10mg/mL, IFN-${\gamma}$ showed the best activity at the effective concentration of 0.63mg/mL. With the result of NK cell activity measurement, the spleen cell of mouse injected SFE had 1.5 times higher killing effect than non injected cell. Conclusions : The result of this studies is that Soybean fermetated extracts(SFE) has possibility to immune aided material for the function not only inhibition of microbial infection to macrophage but also activity of adaption immune and cellular immune system.

Blood Pressure Modulating Effects of Black Raspberry Extracts in vitro and in vivo (복분자 추출물의 항고혈압 활성)

  • Lee, Jung-Hyun;Choi, Hye Ran;Lee, Su Jung;Lee, Min Jung;Ko, Young Jong;Kwon, Ji Wung;Lee, Hee Kwon;Jeong, Jong Tae;Lee, Tae-Bum
    • Korean Journal of Food Science and Technology
    • /
    • v.46 no.3
    • /
    • pp.375-383
    • /
    • 2014
  • This study aimed to investigate the effects of 50% ethanol extract of ripe black raspberry (Rubus occidentalis, RBR) on hypertension in human umbilical vein endothelial cells (HUVECs) and in spontaneously hypertensive rats (SHR). Angiotensin converting enzyme (ACE) inhibition and activation of nitric oxide production by endothelial nitric oxide synthase were significantly regulated by RBR in HUVEC cells. Moreover, the SHR showed significantly higher levels of blood pressure, ACE, renin, endothelin-1, and interleukin-6 than Wistar Kyoto rats (WKY). However, treatment with captopril and RBR decreased the levels of these hypertension-related events in the SHR. The renal arteriole showed greater media thickness/lumen diameter (%) in the SHR than in the WKY. However, media thickness/lumen diameter (%) was reduced in SHR by treatment with captopril and RBR. In addition, the number of eosinophilic cardiac muscle cells was decreased in the heart muscles after treatment with captopril and RBR. Therefore, this study suggests that 50% ethanol extract of RBR may be useful for the prevention and treatment of high blood pressure.

Inhibitory Effect of Mixed Extracts Obtained from Astragali Radix and Lithospermi Radix on Matrix Metalloproteinases in IL-1β-induced SW1353 Cells and Quantitative Analysis of Active Compounds (황기, 지치 복합물의 연골세포에서의 Matrix Metalloproteinases 저해 효과 및 유효성분의 분석)

  • Choi, Doo Jin;Choi, Bo Ram;Lee, Dae Young;Choi, Soo Im;Lee, Young Seob;Kim, Geum Soog
    • Korean Journal of Medicinal Crop Science
    • /
    • v.27 no.4
    • /
    • pp.247-258
    • /
    • 2019
  • Background: Astragali radix (A) and Lithospermi radix (L) have long been used as traditional medicines due to their known anti-inflammatory effects. This study aimed at evaluating, their optimal mixing ratio and their functional compounds by investigating the inhibitory effects of mixed extracts of A and L and their active compounds on matrix metalloproteinases (MMPs). Methods and Results: A and L extracts were obtained by extraction at $80^{\circ}C$ using 50% and 70% fermented alcohol, respectively, and then mixed at a ratio of 5 : 5, 6 : 4, 7 : 3 and 8 : 2 (w/w). The activities of MMP-1, MMP-3, and MMP-13 were evaluated in interleukin-1beta ($IL-1{\beta}$)-induced SW1353 cells. The extract mixtures showed synergistic inhibitory effects on MMP-3 and MMP-13, higher than the effects of the individual A and L extracts. The 7 : 3 mixture (ALM16) showed the most effective MMPs inhibitory activity, while among the active ingredients, calycosin-7-O-${\beta}$-D-glucoside and lithospermic acid exhibited excellent MMPs inhibitory activity. Additionally, an HPLC method was established for simultaneous quantification of the effective components of the extract mixtures, and validated by measuring the linearity, precision and accuracy of the limit of detection (LOD) and limit of quantification (LOQ). Conclusions: ALM16 showed the most effective MMPs inhibitory activity. Calycosin-O-${\beta}$-D-glucoside, calycosin and lithospermic acid were identified as useful candidates, as they were the major functional compounds in the MMP inhibitory activity. Summarily, ALM16 might be a highly effective in osteoarthritis management, owing to its because it exhibits a protective effect on cartilage via excellent inhibition of MMPs.

Anti-inflammatory Effects of Aurantio-obtusin isolated from Cassia tora L. in RAW264.7 Cells (결명자로부터 분리된 Aurantio-obtusin의 항염증 활성)

  • Lee, Ki Ho;Jang, Ji Hun;Woo, Kyeong Wan;Nho, Jong Hyun;Jung, Ho Kyung;Cho, Hyun Woo;Yong, Ju Hyun;An, Byeongkwan
    • Korean Journal of Pharmacognosy
    • /
    • v.50 no.1
    • /
    • pp.11-17
    • /
    • 2019
  • Cassia tora L. have been used as a folk medicine in Korea. This study investigated anti-inflammatory effect of aurantio-obtusin isolated from C. tora. We isolated aurantio-obtusin from 50% ethanol extracts of C. tora L. We investigated the anti-inflammatory effects of aurantio-obtusin on the lipopolysaccharide (LPS)-stimulated inflammatory response in murine macrophage cell line (Raw 264.7). To investigate the cytotoxicity of aurantio-obtusin on RAW 264.7 cells, MTS assay was performed. RAW 264.7 cells were treated with aurantio-obtusin at different concentrations (12.5, 25, 50, $100{\mu}M$) for 30 h. The result showed that aurantio-obtusin had no cytotoxic effect in a concentration range of $12.5-100{\mu}M$. To determine the effect of aurantio-obtusin on LPS-induced NO production, the NO concentration measurement was performed. RAW 264.7 cells were treated with aurantio-obtusin at 12.5, 25, 50 and $100{\mu}M$ for 24 h, and the results showed that the NO production of aurantio-obtusin-treated cells compared to LPS alone treated group was significantly decreased in a dose-dependent manner. Pretreatment of aurantio-obtusin inhibited LPS-induced NO production in a dose-dependent manner. To find out inhibitory mechanisms of aurantio-obtusin on inflammatory mediators, we examined the $PGE_2$ pathways. As a result, $PGE_2$ were decreased in a dose-dependent manner by aurantio-obtusin. The release of interleukin-$1{\beta}$ (IL-$1{\beta}$) and IL-6 were also reduced. Moreover, aurantio-obtusin suppressed LPL-induced $I{\kappa}B-{\alpha}$ degradation. These results suggest that the down regulation of NO, $PGE_2$, IL-$1{\beta}$ and IL-6 expression by aurantio-obtusin are achieved by the downregulation of NF-${\kappa}B$ activity.

Bleomycin Inhibits Proliferation via Schlafen-Mediated Cell Cycle Arrest in Mouse Alveolar Epithelial Cells

  • Jang, Soojin;Ryu, Se Min;Lee, Jooyeon;Lee, Hanbyeol;Hong, Seok-Ho;Ha, Kwon-Soo;Park, Won Sun;Han, Eun-Taek;Yang, Se-Ran
    • Tuberculosis and Respiratory Diseases
    • /
    • v.82 no.2
    • /
    • pp.133-142
    • /
    • 2019
  • Background: Idiopathic pulmonary fibrosis involves irreversible alveolar destruction. Although alveolar epithelial type II cells are key functional participants within the lung parenchyma, how epithelial cells are affected upon bleomycin (BLM) exposure remains unknown. In this study, we determined whether BLM could induce cell cycle arrest via regulation of Schlafen (SLFN) family genes, a group of cell cycle regulators known to mediate growth-inhibitory responses and apoptosis in alveolar epithelial type II cells. Methods: Mouse AE II cell line MLE-12 were exposed to $1-10{\mu}g/mL$ BLM and $0.01-100{\mu}M$ baicalein (Bai), a G1/G2 cell cycle inhibitor, for 24 hours. Cell viability and levels of pro-inflammatory cytokines were analyzed by MTT and enzyme-linked immunosorbent assay, respectively. Apoptosis-related gene expression was evaluated by quantitative real-time reverse transcription-polymerase chain reaction (qRT-PCR). Cellular morphology was determined after DAPI and Hoechst 33258 staining. To verify cell cycle arrest, propidium iodide (PI) staining was performed for MLE-12 after exposure to BLM. Results: BLM decreased the proliferation of MLE-12 cells. However, it significantly increased expression levels of interleukin 6, tumor necrosis factor ${\alpha}$, and transforming growth factor ${\beta}1$. Based on Hoechst 33258 staining, BLM induced condensation of nuclear and fragmentation. Based on DAPI and PI staining, BLM significantly increased the size of nuclei and induced G2/M phase cell cycle arrest. Results of qRT-PCR analysis revealed that BLM increased mRNA levels of BAX but decreased those of Bcl2. In addition, BLM/Bai increased mRNA levels of p53, p21, SLFN1, 2, 4 of Schlafen family. Conclusion: BLM exposure affects pulmonary epithelial type II cells, resulting in decreased proliferation possibly through apoptotic and cell cycle arrest associated signaling.

Ahnak-knockout mice show susceptibility to Bartonella henselae infection because of CD4+ T cell inactivation and decreased cytokine secretion

  • Choi, Eun Wha;Lee, Hee Woo;Lee, Jun Sik;Kim, Il Yong;Shin, Jae Hoon;Seong, Je Kyung
    • BMB Reports
    • /
    • v.52 no.4
    • /
    • pp.289-294
    • /
    • 2019
  • The present study evaluated the role of AHNAK in Bartonella henselae infection. Mice were intraperitoneally inoculated with $2{\times}10^8$ colony-forming units of B. henselae Houston-1 on day 0 and subsequently on day 10. Blood and tissue samples of the mice were collected 8 days after the final B. henselae injection. B. henselae infection in the liver of Ahnak-knockout and wild-type mice was confirmed by performing polymerase chain reaction, with Bartonella adhesion A as a marker. The proportion of B. henselae-infected cells increased in the liver of the Ahnak-knockout mice. Granulomatous lesions, inflammatory cytokine levels, and liver enzyme levels were also higher in the liver of the Ahnak-knockout mice than in the liver of the wild-type mice, indicating that Ahnak deletion accelerated B. henselae infection. The proportion of CD4+interferon-${\gamma}$ ($IFN-{\gamma}^+$) and $CD4^+$ interleukin $(IL)-4^+$ cells was significantly lower in the B. henselae-infected Ahnak-knockout mice than in the B. henselae-infected wild-type mice. In vitro stimulation with B. henselae significantly increased $IFN-{\gamma}$ and IL-4 secretion in the splenocytes obtained from the B. henselae-infected wild-type mice, but did not increase $IFN-{\gamma}$ and IL-4 secretion in the splenocytes obtained from the B. henselae-infected Ahnak-KO mice. In contrast, $IL-1{\alpha}$, $IL-1{\beta}$, IL-6, IL-10, RANTES, and tumor necrosis $factor-{\alpha}$ secretion was significantly elevated in the splenocytes obtained from both B. henselae-infected wild-type and Ahnak-knockout mice. These results indicate that Ahnak deletion promotes B. henselae infection. Impaired $IFN-{\gamma}$ and IL-4 secretion in the Ahnak-knockout mice suggests the impairment of Th1 and Th2 immunity in these mice.