• Title/Summary/Keyword: Interlaminar stress

Search Result 66, Processing Time 0.028 seconds

A New Hybrid-Mixed Composite Laminated Curved Beam Element

  • Lee Ho-Cheol;Kim Jin-Gon
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.3
    • /
    • pp.811-819
    • /
    • 2005
  • In this study, we present a new efficient hybrid-mixed composite laminated curved beam element. The present element, which is based on the Hellinger-Reissner variational principle and the first-order shear deformation lamination theory, employs consistent stress parameters corresponding to cubic displacement polynomials with additional nodeless degrees in order to resolve the numerical difficulties due to the spurious constraints. The stress parameters are eliminated and the nodeless degrees are condensed out to obtain the ($6{\times}6$) element stiffness matrix. The present study also incorporates the straightforward prediction of interlaminar stresses from equilibrium equations. Several numerical examples confirm the superior behavior of the present composite laminated curved beam element.

Mechanical Behavior of Fiber Metal Laminates with Local Delamination Defects (국부적 적층분리결함을 갖는 섬유금속적층판의 기계적 거동 특성)

  • Choi, Heungsoap;Choi, Hyungjip;Choi, Wonjong;Ha, Minsu
    • Journal of Aerospace System Engineering
    • /
    • v.1 no.1
    • /
    • pp.25-35
    • /
    • 2007
  • In this paper, the interlaminar crack problems of a fiber metal laminate (FML) under generalized plane deformation are studied using the theory of anisotropic elasticity. The crack is considered to be embedded in the matrix interlaminar region (including adhesive zone and resin rich zone) of the FML. Based on Fourier integral transformation and the stress matrix formulation, the current mixed boundary value problem is reduced to solving a system of Cauchy-type singular integral equations of the 1st kind. Within the theory of linear fracture mechanics, the stress intensity factors are defined on terms of the solutions of integral equations and numerical results are obtained for in-plane normal (mode I) crack surface loading. The effects of location and length of crack in the 3/2 and 2/1 ARALL, GLARE or CARE type FML's on the stress intensity factors are illustrated.

  • PDF

Behavior for 2 Ply Rubber/Cord Laminates (2층 고무/코드 적층판의 층간거동)

  • 이윤기;임동진;윤희석;김민호;김춘휴
    • Composites Research
    • /
    • v.16 no.4
    • /
    • pp.1-9
    • /
    • 2003
  • 2 ply laminated composite is regarded to simulate the interply behavior of the belt layer of the tire. It was cone with 3 dimensional FE(Finite Element) analysis to determine interply shear stress and strain. Widthwise, the shear strain was measured by the pin method. These results are compared with those of CLT(classical lamination theory) in center region and those of Kassapoglou's and Kelsey's theory in edge region. In the FE analysis. rubber is assumed as linear elastic material. and rubber/cord laminate as the orthotropic material composed of cord and rubber In the FE result, interlaminar shear stress causing the interlaminar delamination has the largest value in the edge region of the inner rubber layer. Numerical results obtained coincides with CLT well in the center region, and agrees with other theoretical result little in the edge region.

Study on Dynamic Characteristics of Delaminated Smart Composite Laminates (층간 분리가 있는 지능 복합재 적층판의 동적특성에 대한 연구)

  • Kim, Heung-Soo;Kim, Jae-Hwan;Choi, Seung-Bok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.4 s.97
    • /
    • pp.395-403
    • /
    • 2005
  • The dynamic characteristics of delaminated smart composite laminates are studied using animproved layerwise laminate theory. The theory is capable of capturing interlaminar shear stresses that are critical to delamination. The presence of discrete delamination is modeled through the use of Heaviside unit step functions. Stress free boundary conditions are enforced at all free surfaces. Continuity in displacement field and transverse shear stresses are enforced at each ply level. In modeling piezoelectric composite plates, a coupled piezoelectric-mechanical formulation is used in the development of the constitutive equations. Numerical analysis is conducted to investigate the effect of nonlinearity in the transient vibration of bimodular behavior caused by the contact impact of delaminated interfaces. Composite plates with delamination, subject to external loads and voltage history from surface bonded sensors, are investigated and the results are compared with corresponding experimental results and plates without delamination.

The Effect of Variable Electric Fields on the PZT Characteristic and Laminate Configuration in LIPCA (LIPCA에 공급되는 전기장의 변화가 PZT 특성과 적층배향에 미치는 영향)

  • Kim Cheol-Woong;Nam In-Chang;Yoon Kwang-Joon
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.397-398
    • /
    • 2006
  • The advanced piezoelectric ceramic composite actuator, which is called LIPCA with the FRP and the optimization of the laminate configuration, was performed to maximize the stress transfer and the fiber bridging effect. This study evaluated the effect of variable electric fields on the PZT characteristic, laminate configuration and fatigue characteristics under the resonance frequency, which meant the largest performance range and the changes of its interlaminar phase were also evaluated by stages. In conclusions, Comparing with the fatigue lift of intact LIPCA, the fatigue life of LIPCA embedded by the artificial delamination was decreased up to 50%. The micro void growth and the coalescence of epoxy were actively made at the interlaminar phase subject to the large tensile stress.

  • PDF

Analysis of Mixed Mode Delamination in Graphite/Epoxy Composite (흑연/에폭시 복합재료의 혼합모우드 층간분리 해석)

  • Yum, Y. J.;You, H.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.4
    • /
    • pp.171-178
    • /
    • 1996
  • DCB(pure mode I) and CLS(mixed mode) tests were performed to investigate the effect of fracture mode on the interlaminar fracture of composite laminate. Mode I critical strain energy release rate was found to be $133J/m^2$ from the DCB test and total strain energy release rate decreased from $1, 270J/m^2$ as thickness ratio(tl/t) varied from 0.333 to 0.667 from the crease from the CLS test. Crack length had no effect on the total strain energy release rate and load was almost constant during the crack growth of the specimen which had the specific thickness ratio. Crack initiated when the stress of the strap ply reached constant stress $42kgf/mm^2$ which was found to be independent of the thickness ratio.

  • PDF

Implementation of a micro-meso approach for progressive damage analysis of composite laminates

  • Hosseini-Toudeshky, H.;Farrokhabadi, A.;Mohammadi, B.
    • Structural Engineering and Mechanics
    • /
    • v.43 no.5
    • /
    • pp.657-678
    • /
    • 2012
  • The mismatch of ply orientations in composite laminates can cause high interlaminar stress concentrations near the free edges. Evaluation of these interlaminar stresses and their role in the progressive damage analysis of laminates is desirable. Recently, the authors developed a new method to relate the physically based micromechanics approach with the meso-scale CDM considering matrix cracking and induced delamination. In this paper, the developed method is applied for the analysis of edge effects in various angle-ply laminates such as $[10/-10]_{2s}$, $[30/-30]_{2s}$ and $[45/-45]_{2s}$ and comparing the results with available traditional CDM and experimental results. It is shown that the obtained stress-strain behaviors of laminates are in good agreement with the available experimental results and even in better agreement than the traditional CDM results. Variations of the stresses and stiffness components through the laminate thickness and near the free edges are also computed and compared with the available CDM results.

Optimal design of composite laminates for minimizing delamination stresses by particle swarm optimization combined with FEM

  • Chen, Jianqiao;Peng, Wenjie;Ge, Rui;Wei, Junhong
    • Structural Engineering and Mechanics
    • /
    • v.31 no.4
    • /
    • pp.407-421
    • /
    • 2009
  • The present paper addresses the optimal design of composite laminates with the aim of minimizing free-edge delamination stresses. A technique involving the application of particle swarm optimization (PSO) integrated with FEM was developed for the optimization. Optimization was also conducted with the zero-order method (ZOM) included in ANSYS. The semi-analytical method, which provides an approximation of the interlaminar normal stress of laminates under in-plane load, was used to partially validate the optimization results. It was found that optimal results based on ZOM are sensitive to the starting design points, and an unsuitable initial design set will lead to a result far from global solution. By contrast, the proposed method can find the global optimal solution regardless of initial designs, and the solutions were better than those obtained by ZOM in all the cases investigated.

Transient Analysis of Delaminated Smart Composite Laminates (층간 분리가 있는 지능형 복합재 적층판의 과도응답해석)

  • Kim, Heung-Su;Kim, Jae-Hwan;Choi, Seung-Bok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.469-475
    • /
    • 2004
  • The transient analysis of delaminated smart composite laminates is studied using an improved layerwise laminate theory. The theory is capable of capturing interlaminar shear stresses that are critical to delamination. The presence of discrete delamination is modeled through the use of Heaviside unit step functions. Stress free boundary conditions are enforced at all fee surfaces. Continuity in displacement field and transverse shear stresses are enforced at each ply level. In modeling piezoelectric composite plates, a coupled piezoelectric-mechanical formulation is used in the development of the constitutive equations. Numerical analysis is conducted to investigate the effect of nonlinearity in the transient vibration of bimodular behavior caused by the contact impact of delaminated interfaces. Composite plates with delamination, subject to external loads and voltage history from surface bonded sensors, are investigated and the results are compared with corresponding experimental results and plates without delamination.

  • PDF

Prediction of Mechanical Properties of Honeycomb Core Materials and Analysis of Interlaminar Stress of Honeycomb Sandwich Composite Plate (하니컴코어 재료의 기계적 물성 예측과 하니컴 샌드위치 복합재료 평판의 층간응력 해석)

  • 김형구;최낙삼
    • Composites Research
    • /
    • v.17 no.1
    • /
    • pp.29-37
    • /
    • 2004
  • Honeycomb sandwich composite(HSC) structures have been widely used in aircraft and military industry owing to their light weight and high stiffness. Mechanical properties of honeycomb core materials are needed for accurate analysis of the sandwich composites. In this study. theoretical formula for effective elastic modulus and Poisson's ratio of honeycomb core materials was established using an energy method considering the bending, axial and shear deformations of honeycomb core walls. Finite-element analysis results obtained by using commercial FEA code, ABAQUS 6.3 were comparable to the theoretical ones. In addition, we performed tensile test of HSC plates and analyzed deformation behaviors and interlaminar stresses through its FEA simulation. An increased shear stress along the interface between surface and honeycomb core layers was shown to be the main reason for interfacial delamination in HSC plate under tensile loading.