• Title/Summary/Keyword: Interlaminar properties

Search Result 107, Processing Time 0.029 seconds

The Evaluation of Interlaminar Fracture Toughness and AE Characteristics in a Plain Woven CFRP Composite with DCB Specimen (DCB 시험편의 평직 CFRP 복합재 층간파괴인성 및 AE 특성 평가)

  • Yun Yu-Seong;Kwon Oh-Heon
    • Journal of the Korean Society of Safety
    • /
    • v.20 no.1 s.69
    • /
    • pp.49-54
    • /
    • 2005
  • Recently, many kinds of advanced composite materials have been used in various industry fields. Among them, fabric CFRP composites are being used as primary structural components in many applications because of their superior properties. However, the complexity of the fabric structure makes understanding of their failure behavior very difficult. The mechanical strength and crack propagation of plain woven carbon fiber fabric laminate composites are examined by acoustic emission(AE) method. AE signals are acquired during the tensile test and fracture tests. Thus, the relationship between AE signal and mechanical behavior curves and crack extension length are shown. Also the interlaminar fracture toughness in terms of AE characteristics are discussed in viewpoint of crack propagation behavior.

A Study on Mechanical Interfacial Properties of Copper-plated Carbon Fibers/Epoxy Resin Composites (구리도금된 탄소섬유/에폭시 수지 복합재료의 기계적 계면 특성에 관한 연구)

  • Hong, Myung-Sun;Bae, Kyong-Min;Choi, Woong-Ki;Lee, Hae-Seong;Park, Soo-Jin;An, Kay-Hyeok;Kim, Byung-Joo
    • Applied Chemistry for Engineering
    • /
    • v.23 no.3
    • /
    • pp.313-319
    • /
    • 2012
  • In this work, the electroplating of copper was introduced on PAN-based carbon fibers for the enhancement of mechanical interfacial strength of carbon fibers-reinforced composites. The surface properties of carbon fibers were determined by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and contact angle measurements. Its mechanical interfacial properties of the composites were studied by interlaminar shear strength (ILSS) and critical stress intensity factor ($K_{IC}$). From the results, it was found that the mechanical interfacial properties of Cu-plated carbon fibers-reinforced composites (Cu-CFRPs) enhanced with increasing the Cu plating time, Cu content and COOH group up to Cu-CFRP-30. However, the mechanical interfacial properties of the Cu-CFRPs decreased dramatically in the excessively Cu-plated CFRPs sample. In conclusion, the presence of Cu particles on carbon fiber surfaces can be a key factor to determine the mechanical interfacial properties of the Cu-CFRPs, but the excessive Cu content can lead the failure due to the interfacial separation between fibers and matrices in this system.

Experimental investigation of novel pre-tightened teeth connection technique for composite tube

  • Li, Fei;Zhao, Qilin;Chen, Haosen;Xu, Longxing
    • Steel and Composite Structures
    • /
    • v.23 no.2
    • /
    • pp.161-172
    • /
    • 2017
  • A new composite tube connection method called the pre-tightened teeth connection technique is proposed to improve the composite tube connection efficiency. This paper first introduces the manufacturing process of the proposed technique. It then outlines how the mechanical properties of this technology were tested using four test groups. The factors that influence the load-bearing capacity and damage model of the connection were analyzed, and finally, the transfer load mechanism was investigated. The following conclusions can be obtained from the research results. (1) The new technique improves the compressive connection efficiency by a maximum of 79%, with the efficiency exceeding that of adhesive connections of the same thickness. (2) Changing the depth of teeth results in two types of damage: local compressive damage and shear damage. The bearing capacity can be improved by increasing the depth, length, and number of teeth as well as the pre-tightening force. (3) The capacity of the technique to transfer high loads is a result of both the relatively high interlaminar shear strength of the pultruded composite and the interlaminar shear strength increase provided by the pre-tightening force. The proposed technique shows favorable mechanical properties, and therefore, it can be extensively applied in the engineering field.

Studies of Electroless Ni-plating on Surface Properties of Carbon Fibers and Mechanical Interfacial Properties of Composites (화학환원 니켈도금 처리에 따른 탄소섬유 표면 및 복합재료의 기계적 계면 특성)

  • 박수진;장유신;이재락
    • Polymer(Korea)
    • /
    • v.25 no.2
    • /
    • pp.218-225
    • /
    • 2001
  • The electroless plating of a metallic nickel on PAN-based carbon fiber surfaces was carried out to improve mechanical interfacial properties of the carbon fiber/epoxy resin composites which were unidirectionally fabricated by a prepregging method. In this work, the influence of Ni-P alloy concentration showing brittle-to-ductile transition was investigated on interlaminar shear strength (ILSS) and impact strength of the composites. The surface properties of carbon fibers were also measured by X-ray photoelectron spectroscopy (XPS). As the result, the $O_{ls}$ /$O_{ls}$ ratio or Ni and P amounts were increased with increasing electroless nickel plating time but the ILSS were not significantly improved. However, the impact properties was significantly improved in the presence of Ni-P alloy in the carbon fiber surface, resulting in an increase of the ductility of the composites.

  • PDF

A study on the variation of in-plane and out-of-plane properties of T800 carbon/epoxy composites according to the forming pressure (성형 압력에 따른 T800 탄소섬유/에폭시 복합재료의 평면 내.외 물성 변화에 대한 연구)

  • Park, Myong-Gil;Cho, Sung-Kyum;Chang, Seung-Hwan
    • Composites Research
    • /
    • v.23 no.6
    • /
    • pp.61-66
    • /
    • 2010
  • In this paper, the variation of mechanical properties of T800 carbon/epoxy composites according to the forming pressure, which was referred to previous studies on a filament winding process, were investigated. The specimens of all the tests were fabricated by an autoclave de-gassing molding process controlling forming pressure (absolute pressures of 0.1MPa, 0.3MPa, 0.7MPa including vacuum) and water jet cutting after fabricating composite laminates. Various tensile tests were performed for in-plane properties and interlaminar properties were also measured by using Iosipescu test jig. Fiber volume fraction was measured to correlate the property variation and the forming pressure. This properties are expected to be utilized in the design of Type III pressure vessel for hydrogen vehicles which uses the same carbon fiber (T800 carbon fiber) for the filament winding process.

Improvement of Physical Properties for Carbon Fiber/PA 6,6 Composites (탄소섬유/폴리아마이드 6,6 복합재료의 기계적 물성 향상)

  • Song, Seung A;On, Seung Yoon;Park, Go Eun;Kim, Seong Su
    • Composites Research
    • /
    • v.30 no.6
    • /
    • pp.365-370
    • /
    • 2017
  • Mechanical properties of carbon fiber reinforced thermoplastic composites (CFRTPs) are affected by various factors. One of the them are poor compatibility of the epoxy sizing layer on the carbon fiber surface with thermoplastic matrix, which causes the inferior interfacial strength between fibers and matrix. In addition, the high molten-viscosity of thermoplastics attributes to the poor impregnation state. Consequently, many voids in the composite materials were generated, which leads to poor mechanical properties of the thermoplastic composites. In this study, the epoxy sizing on the carbon fiber surface was removed and the polyamide 6,6 solution was coated on the de-sized carbon fiber surface to improve the impregnation state and mechanical properties. Interlaminar shear strength (ILSS) of CFRPTs was estimated by implementing short beam shear tests. In addition, flexural strength was measured and the impregnation state of the composites was evaluated by calculating void content.

Evaluation Techniques of Mechanical Properties for Composite Carbody of Tilting Train (틸팅차량용 복합재 차체소재의 기계적 특성 평가 기술)

  • Lee Eun Dong;Yoon Sung Ho;Shin Kwang Bok;Jeong Jong Cheol
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.04a
    • /
    • pp.51-54
    • /
    • 2004
  • Testing methods for mechanical properties of the advanced composites were introduced. The mechanical properties, such as tensile properties, compressive properties, in-plane shear properties, flexural properties, and interlaminar shear properties, were evaluated along the warp and the fill directions. The CF3327 of the carbon fabric, the HG1581 of the glass fabric, and the HK285 of the aramid fabric were considered as reinforcements. Epoxy and phenolic resin were used as resin. The experimental results obtained in this study would be applicable in the design and structural analysis for the manufacture of the carbody of the tilting train.

  • PDF

The Improvement of Interlaminar Shear Strength for Low Density 2-D Carbon/Carbon Composites by Additives (첨가제에 의한 저밀도 2-D 탄소/탄소 복합재의 층간전단강도 개선)

  • 손종석;정구훈;주혁종
    • Polymer(Korea)
    • /
    • v.24 no.6
    • /
    • pp.845-853
    • /
    • 2000
  • The optimum cure cycle and carbonization condition were selected by the DSC and TGA analysis and green bodies were prepared by the method of hot press molding and then carbonized up to 140$0^{\circ}C$. Additives such as graphite powder, carbon black, milled carbon fiber and carbon fiber mat, which were considered to be effective in improving the interlaminar shear strength, were also added to check their effects on the density and porosity of products. Then, their relations with mechanical properties such as ILSS and flexural strength were investigated. The composites added 9 vol% of graphite powder showed the greatest values of ILSS and flexural strength. Otherwise, in case of adding carbon black, the composites showed the slight improvement of ILSS at its contents of 3 vol% but the flexural strength was decreased. When milled carbon fiber and carbon fiber mat were added, the lack of resin and the heat shrinkage during the carbonization caused the delamination, resulting in decreasing the density, ILSS and flexural strength.

  • PDF

Influence of Sizing Agent on Interfacial Adhesion and Mechanical Properties of Glass Fiber/Unsaturated Polyester Composites (사이징제에 따른 유리섬유/불포화 폴리에스터 복합재료의 계면 접착력과 기계적 물성)

  • 박수진;김택진;이재락;홍성권;김영근
    • Polymer(Korea)
    • /
    • v.24 no.3
    • /
    • pp.326-332
    • /
    • 2000
  • The effects of sizing agent on the final mechanical properties of the glass fiber/unsaturated polyester composites were investigated by contact angle measurements at room temperature. In this work, glass fibers were coated by poly(vinyl alcohol), polyester, and epoxy type sizing agent and each property was compared. Contact angles of the sized glass fiber were measured by the wicking method based on Washburn equation using deionized water and diiodomethane as testing liquids. As an experimental result, the surface free energy calculated from contact angle showed the highest value in case of the glass fiber coated by epoxy sizing agent. From measurements of interlaminar shear strength (ILSS) and fracture toughness ( $K_{IC}$ ) of the composites, it was found that the sizing treatment on fibers could improve the fiber/matrix interfacial adhesion, resulting in growing the final mechanical properties. This was due to the enhanced surface free energy of glass fibers in a composite system.

  • PDF

On the Development of Hybrid Composites with Non-Woven Tissue (부직포를 이용한 하이브리드 복합재료의 개발)

  • Lee Seung-Hwan;Noguchi Hiroshi;Cheong Seong-Kyun
    • Composites Research
    • /
    • v.19 no.2
    • /
    • pp.20-27
    • /
    • 2006
  • The hybrid composite materials with non-woven tissue (NWT) was developed to improve the mechanical properties of conventional FRP composite materials. The hybrid prepreg with NWT consists of FRP prepreg and NWT prepreg. The NWT prepreg consists of NWT and polymer resin. The NWT has short fibers, discretely distributed with in-plane random orientation fibers. The purposes of this study of hybrid prepreg with NWT are (i) to increase the interlaminar properties(the fracture toughness and strength), (ii) to improve the mechanical properties and reliability, while maintaining a low cost, (iii) to introduce a tough and strong interlayer at critical positions to be required of strength in the laminate. To accomplish the above purposes, a production technique to decrease voids in NWT layers was proposed in this paper. The interlaminar failure characteristics of laminated composite materials was tremendously improved by hybrid concept with NWT.