• Title/Summary/Keyword: Interlaminar Strength

Search Result 107, Processing Time 0.021 seconds

On the Development of Hybrid Composites with Non-Woven Tissue (부직포를 이용한 하이브리드 복합재료의 개발)

  • Lee Seung-Hwan;Noguchi Hiroshi;Cheong Seong-Kyun
    • Composites Research
    • /
    • v.19 no.2
    • /
    • pp.20-27
    • /
    • 2006
  • The hybrid composite materials with non-woven tissue (NWT) was developed to improve the mechanical properties of conventional FRP composite materials. The hybrid prepreg with NWT consists of FRP prepreg and NWT prepreg. The NWT prepreg consists of NWT and polymer resin. The NWT has short fibers, discretely distributed with in-plane random orientation fibers. The purposes of this study of hybrid prepreg with NWT are (i) to increase the interlaminar properties(the fracture toughness and strength), (ii) to improve the mechanical properties and reliability, while maintaining a low cost, (iii) to introduce a tough and strong interlayer at critical positions to be required of strength in the laminate. To accomplish the above purposes, a production technique to decrease voids in NWT layers was proposed in this paper. The interlaminar failure characteristics of laminated composite materials was tremendously improved by hybrid concept with NWT.

A Study on the Preparation of the Eco-friendly Carbon Fibers-Reinforced Composites

  • Choi, Kyeong-Eun;Seo, Min-Kang
    • Carbon letters
    • /
    • v.14 no.1
    • /
    • pp.58-61
    • /
    • 2013
  • In this work, the effect of catalysts on the mechanical properties of carbon fibers-reinforced epoxy matrix composites cured by cationic latent thermal catalysts, i.e., N-benzylpyrazinium hexafluoroantimonate (BPH) was studied. Differential scanning calorimetry was executed for thermal characterization of the epoxy matrix system. Mechanical interfacial properties of the composites were studied by interlaminar shear strength (ILSS), critical stress intensity factor ($K_{IC}$), and specific fracture energy ($G_{IC}$). As a result, the conversion of neat epoxy matrix cured by BPH was higher than that of one cured by diaminodiphenyl methane (DDM). The ILSS, $K_{IC}$, $G_{IC}$, and impact strength of the composites cured by BPH were also superior to those of the composites cured by DDM. This was probably the consequence of the effect of the substituted benzene group of BPH catalyst, resulting in an increase in the cross-link density and structural stability of the composites studied.

Evaluation of Mechanical Properties of Carbon Fabrics Composite with Thermal Shock (열 충격에 따른 탄소 직물 복합재료의 역학적 특성 평가)

  • Kim, Jae-Hong;Lee, Jung-Ho;Jung, Kyung-Ho;Kang, Tae-Jin
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.11a
    • /
    • pp.79-82
    • /
    • 2005
  • In this study, mechanical properties of carbon fabrics composite under the thermal shock cycling were evaluated. Due to the interactions between fiber and polymer matrix, it is reasonable to conclude that both thermal cycles of thermal shock result in improvement of interlaminar shear strength(ILSS) for the longer conditioning time duration. The rise in ILSS may be attributed to the improved adhesion by cryogenic compressive stress and also by the post-curing strengthening effect. However, the flexural and tensile strength were decreased with increasing conditioning time of thermal cycle.

  • PDF

Effects of High Energy Radiation on the Mechanical properties of Carbon Fiber/Dpoxy Composites (고에너지 방사선이 탄소섬유/에폭시 복합재료의 기계적 물성에 미치는 영향)

  • 박종신
    • The Korean Journal of Rheology
    • /
    • v.3 no.1
    • /
    • pp.22-29
    • /
    • 1991
  • In an effort to predict the long term durability of carbon fiber/epoxy composites in a space environ-ment interlaminar shear strength (ILSS) of the composites was measured as a function of 0.5 MeV electron radiation dosage. For the ILSS measurements a notch method (ASTM D3846) was used with and without side-supports. the supports were used to prevent peeling or bending during the test. The ILSS of both T300/ 5209 longitudinal composite system increases monotonically with radiation when the test is corried out without the support the ILSS of the composites increases initially but then decreases with further radiation. It is also observed that the ILSS of the unsupported case is much lower than that of the supported case. Measurement of epoxy modulus shows that the elastic modulus increases monotonically with radiation. But the breaking strength of the epoxy decreases with radiation. Electron Spectroscopy for Chemcal Analysis shows that the oxygen contents at both the pure epoxy surface and the composite fracture surface increase with radiation dose resulting in the increase of polarity at the interfacial region. This may be a supporting evidence for the increase in the ILSS of the composites.

  • PDF

Interlaminar Shear Strength and Impact behavior of Low Density 2-D Carbon/Carbon Composites according to Additives (첨가제에 따른 저밀도 2-D 탄소/탄소복합재의 층간전단강도 및 충격거동)

  • 손종석;정구훈;주혁종
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.11a
    • /
    • pp.88-91
    • /
    • 2000
  • 흑연분말, 카본블랙, 탄소섬유분말을 첨가제로 한 저밀도 2-D 탄소/탄소 복합재의 밀도 및 기 기공도에 피치는 영향과 ILSS, 굽힘강도 및 충격에너지와 같은 기계적 물성과의 상관관계에 대하여 연구하였다. 흑연분말을 약 9 vol.% 첨가한 경우 가장 큰 ILSS값과 굽힘강도 및 충격에너지 흡수 거동을 나타내었는데, 특히 흑연의 함량이 증가함에 따라 puncture mode로의 충격 거동을 나타내 띠 많은 충격에너지를 흡수하였고, 인성이 상당히 증가하였다 카본블랙이 첨가된 경우에는, 약 3 vol.%에서 ILSS 값이 증가하였으나 큰 개선을 보이지 못하였으며, 굽힘강도는 감소하였다. 탄소섬유분말의 첨가량이 증가함에 따라 층간분리에 의해 밀도가 현저히 감소하여 ILSS 및 굽힘강도의 감소를 보였다.

  • PDF

Postbuckling response and failure of symmetric laminated plates with rectangular cutouts under uniaxial compression

  • Singh, S.B.;Kumar, Dinesh
    • Structural Engineering and Mechanics
    • /
    • v.29 no.4
    • /
    • pp.455-467
    • /
    • 2008
  • This paper deals with the buckling and postbuckling responses and the progressive failure of square symmetric laminates with rectangular cutouts under uniaxial compression. A detailed investigation is made to show the effects of cutout size and cutout aspect ratio on prebuckling and postbuckling responses, failure loads and failure characteristics of $(+45/-45/0/90)_{2s}$, $(+45/-45)_{4s}$ and $(0/90)_{4s}$ laminates. The 3-D Tsai-Hill criterion is used to predict the failure of a lamina while the onset of delamination is predicted by the interlaminar failure criterion. In addition, the effects of boundary conditions on buckling load, failure loads, failure modes and maximum transverse deflection for a $(+45/-45/0/90)_{2s}$ laminate with and without cutout have also been presented. It is concluded that square laminates with small square cutouts have more postbuckling strength than without cutout, irrespective of boundary conditions.

Static Compressive Strength of Thick Unidirectional Carbon Fiber - Epoxy Laminate (두꺼운 일방향 탄소섬유-에폭시 적층판의 정적 압축 강도 연구)

  • Lee, J.;Soutis, C.;Gong, Chang-Deok
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.11a
    • /
    • pp.61-65
    • /
    • 2005
  • Existing test methods for thick-section specimens ( 4mm) have not provided precise compressive properties to date for the analysis and design of thick structure. A survey of the failure behaviour of such thick specimens revealed that the failure initiated at the top corner of the specimen and propagated down and across the width of the specimen as premature failure, not typically reported for thin compression specimens. In the current study, the premature failure was successfully avoided during compressive testing and the failure mode was quite similar regardless of increasing specimen thickness and specimen volume. Failure mode was similar regardless of increasing specimen thickness and specimen volume, i.e. brooming failure mode combined with longitudinal splitting, interlaminar cracking, fibre breakage and kinkband formation (fibre microbuckling). Nevertheless, average failure strengths of the specimens decreased with increasing specimen thicnkiness from 2mm to 8mm with the T800/924C system (36% strength reduction) and specimen volumes from scaling factor I to scaling factor 4 with the IM7/8552 system (46% strength reduction). It was revealed from the literature$^{11}$ that the thickness effect and scaling effect arc caused by manufacturing defects such as void content and fibre waviness.

  • PDF

Electrodeposition onto the Surface of Carbon Fiber and its Application to Composites(I) - Electrodeposition of MVEMA and EMA (탄소섬유 표면에의 고분자 전착과 복합재료 물성(I) - MVEMA와 EMA의 전착 -)

  • Kim, Minyoung;Kim, Jihong;Kim, Wonho;Kim, Booung;Hwang, Byungsun;Choi, Youngsun
    • Applied Chemistry for Engineering
    • /
    • v.9 no.6
    • /
    • pp.894-900
    • /
    • 1998
  • An interphase between carbon fiber and epoxy matrix was introduced to increase impact strength of carbon fiber reinforced composites (CFRC) without sacrificing the interlaminar shear strength. Flexible polymers, I. e., MVEMA (poly(methyl vinyl ether-co-maleic anhydride)) and EMA(poly(ethylene-co-maleic anhydride)), which have reactive functional groups were considered as interphase materials. Weight hain of MVEMA and EMA onto the surface of carbon fibers was evaluated by changing the parameters of electrodeposition process. Electrodeposition mechanism of polymers which have anhydride functional group was identified by IR spectroscopy, that is, the generation of $RCOO^-$ functional group by the attack of hydroxide anion in the basic solution was observed. The weight gain was increased by increasing concentration of polymers, current density, and electrodeposition time. However the excess generation of oxygen gas decreased the weight gain by removing the deposited polymers. Washing in the running water easily removed the deposited polymers which are on the fiber surface without bonding, as a results, only 0.5 wt% of deposited polymers are remained.

  • PDF

Effect of agglomerated zirconia-toughened mullite on the mechanical properties of giant cane fiber mat epoxy laminated composites

  • Sahu, Pruthwiraj;Parida, Sambit Kumar;Mantry, Sisir
    • Structural Engineering and Mechanics
    • /
    • v.70 no.2
    • /
    • pp.233-243
    • /
    • 2019
  • This paper depicts the development and characterizations of laminated composites made with cellulosic giant cane (Arundinaria gigantea) fiber mats and epoxy resin. Zirconia-toughened mullite (ZTM) is used as a filler material in the laminated composite which was prepared from sillimanite through plasma processing technique. The mechanical characterizations of this composite have been carried out as per ASTM standards to evaluate its usability as a structural material. The effects of varying weight percentages of the filler and two different fiber orientations namely, angle-ply [$+45^{\circ}/-45^{\circ}/+45^{\circ}$] and balanced cross-ply [$0^{\circ}/90^{\circ}/0^{\circ}$] on the physical and mechanical properties such as density, microhardness, impact strength, tensile strength and interlaminar shear strength of the layered composite specimens have been investigated. The study indicates that the inclusion of zirconia-toughened mullite in the composite laminate as filler improves its mechanical properties. Moreover, the use of giant cane fiber mat in the laminate is more eco-friendly than the synthetic fibers. This research also helps in generating additional data to enrich the repository of natural fiber reinforced laminated composites.

Bond Failure Surface of Glass Fiber Reinforced Polymer Bars (GFRP 보강근의 부착파괴면)

  • Lee, Jung-Yoon;Yi, Chong-Ku;Kim, Tae-Young;Park, Ji-Sun;Park, Young-Hwan
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.3
    • /
    • pp.383-391
    • /
    • 2008
  • The effects of concrete strength on bond-slip behavior and the failure mechanisms of glass fiber reinforced polymer (GFRP) bar embedded in concrete under direct pullout were investigated in this study. Total of twenty seven specimens were prepared by placing two different types of GFRP bars and conventional steel rebar in 25 MPa, 55 MPa, and 75 MPa concrete and tested according to CSA S806-02. The test results showed that the bond strength of the GFRP rebars as well as the steel increased with the concrete strength. However, the increase in the bond strength with respect to the concrete strength was not as significant in the GFRP series as the steel, and it was attributed to the interlaminar failure mechanism observed in the GFRP test specimens.