• Title/Summary/Keyword: Interferon-beta

Search Result 183, Processing Time 0.023 seconds

Calcium/Calmodulin-Dependent Protein Kinase is Involved in the Release of High Mobility Group Box 1 Via the Interferon-${\beta}$ Signaling Pathway

  • Ma, Lijuan;Kim, Seon-Ju;Oh, Kwon-Ik
    • IMMUNE NETWORK
    • /
    • v.12 no.4
    • /
    • pp.148-154
    • /
    • 2012
  • Previously, we have reported that high mobility group box 1 (HMGB1), a proinflammatory mediator in sepsis, is released via the IFN-${\beta}$-mediated JAK/STAT pathway. However, detailed mechanisms are still unclear. In this study, we dissected upstream signaling pathways of HMGB1 release using various molecular biology methods. Here, we found that calcium/calmodulin-dependent protein kinase (CaM kinase, CaMK) is involved in HMGB1 release by regulating IFN-${\beta}$ production. CaMK inhibitor, STO609, treatment inhibits LPS-induced IFN-${\beta}$ production, which is correlated with the phosphorylation of interferon regulatory factor 3 (IRF3). Additionally, we show that CaMK-I plays a major role in IFN-${\beta}$ production although other CaMK members also seem to contribute to this event. Furthermore, the CaMK inhibitor treatment reduced IFN-${\beta}$ production in a murine endotoxemia. Our results suggest CaMKs contribute to HMGB1 release by enhancing IFN-${\beta}$ production in sepsis.

Preparation and Characterization of Cell Hybrids Producing a Monoclonal Antibody to Human Fibroblast Interferon (Hu IFN-$\beta$) (사람 선유아세포 인터페론(Hu IFN-$\beta$)에 대한 단 Clone성 항체생산세포의 조작과 그 성질에 관한 연구)

  • 김현수;현형환;최경희;문홍모;유무영
    • Microbiology and Biotechnology Letters
    • /
    • v.14 no.3
    • /
    • pp.219-223
    • /
    • 1986
  • In order to preparr the hybridoma cells which produce a monoclonal antibody to human fibroblast interferon(Hu IFN-$\beta$), spleen cells from BALB/cmice immunized with the purified Hu IFN-$\beta$ were fused with NS-O cells, a myeloma cell line. Forty hybrids with high titer among 1300 hybrids Isolated by an ELISA screening method were subcloned using the soft agarose cloning and limiting dilution methods, and 11 hybrids were selected. As a result of iso-typing the hybrids using the mouse monoclonal typing kit, two hybridomas were found to produce 1gG 2a type of monoclonal an-tibodies. The ascites fluid from nude mice inoculated intraperitoneally with the above hybridomas was removed and purified using a protein A-Sepharose CL-4B. Monoclonal antibody was proven to have only the heavy and light chains on SDS-polyacrylamide gel electrophoresis.

  • PDF

A case of childhood relapsing/remitting multiple sclerosis and interferon β-1b treatment in a Korean patient (소아 재발/완화형 다발성 경화증 환자에서 인터페론 베타 1b 치료 1례)

  • Kim, Hyun Seok;Lee, Won Deok;Lee, Jun Hwa;Cho, Kyung Lae
    • Clinical and Experimental Pediatrics
    • /
    • v.50 no.6
    • /
    • pp.580-584
    • /
    • 2007
  • Multiple sclerosis (MS) is a demyelinating disorder that affects discrete areas of the CNS, including the optic nerves, in a quite variable relapsing-remitting fashion over a prolonged period of time. Although MS is usually considered to be a disease that affects peoples in early to middle adulthood, children do develop multiple sclerosis. The frequency of MS onset before the age of 15 years is 2.7-5% of all cases, while MS onset during infancy and early childhood was observed to be 0.2-0.7% of all cases. We report here on a Korean case of a relapsing-remitting MS female child who was treated with four rounds of intravenous methylpredinsolone pulse therapy and preventive Interferon-$\beta$-1b ($Betaferon^{(R)}$).

Inhibitory Effect of IFN-$\beta$, on the Antitumor Activity of Celecoxib in U87 Glioma Model

  • Kim, Eun-Kyoung;Chung, Dong-Sup;Shin, Hye-Jin;Hong, Yong-Kil
    • Journal of Korean Neurosurgical Society
    • /
    • v.46 no.6
    • /
    • pp.552-557
    • /
    • 2009
  • Objective : Interferon-$\beta$, (IFN-$\beta$) has been used in the treatment of cancers. Inhibition of the enzyme cyclooxygenase (COX) with celecoxib had a significantly suppressive effect on tumor growth, angiogenesis, and metastasis in a variety of tumors. The aim of this study was to elucidate the antiglioma effect of combined treatment with IFN-$\beta$ and celecoxib in U87 glioma model. Methods : The in vitro effects of IFN-$\beta$ (50-1,000 IU/mL) and celecoxib ($50-250\;{\mu}M$) alone or combination of both on the proliferation and apoptosis of U87 cells were tested using MTT assay, FACS analysis and DNA condensation. To determine the in vivo effect, nude mice bearing intracerebral U87 xenograft inoculation were treated with IFN-$\beta$ intraperitoneally ($2{\times}10^5\;IU/day$ for 15 days), celecoxib orally (5, 10 mg/kg) or their combination. Results : IFN-$\beta$ or celecoxib showed an inhibitory effect on the proliferation of U87 cells. When U87 cells were treated with IFN-$\beta$ and celecoxib combination, it seemed that IFN-$\beta$ interrupted the antiproliferative and apoptotic activity of celecoxib. No additive effect was observed on the survival of the tumor bearing mice by the combination of IFN-$\beta$ and celecoxib. Conclusion : These results suggest that IFN-$\beta$ seems to inhibit the antiglioma effect of celecoxib, therefore combination of IFN-$\beta$ and celecoxib may be undesirable in the treatment of glioma.

Hydroquinone suppresses IFN-β expression by targeting AKT/IRF3 pathway

  • Kim, Yong;Kim, Han Gyung;Han, Sang Yun;Jeong, Deok;Yang, Woo Seok;Kim, Jung-Il;Kim, Ji Hye;Yi, Young-Su;Cho, Jae Youl
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.21 no.5
    • /
    • pp.547-554
    • /
    • 2017
  • Previous studies have demonstrated the role of hydroquinone (HQ), a hydroxylated benzene metabolite, in modulating various immune responses; however, its role in macrophage-mediated inflammatory responses is not fully understood. In this study, the role of HQ in inflammatory responses and the underlying molecular mechanism were explored in macrophages. HQ down-regulated the expression of interferon $(IFN)-{\beta}$ mRNA in LPS-stimulated RAW264.7 cells without any cytotoxicity and suppressed interferon regulatory factor (IRF)-3-mediated luciferase activity induced by TIR-domain-containing adapter-inducing interferon-${\beta}$ (TRIF) and TANK-binding kinase 1 (TBK1). A mechanism study revealed that HQ inhibited IRF-3 phosphorylation induced by lipopolysaccharide (LPS), TRIF, and AKT by suppressing phosphorylation of AKT, an upstream kinase of the IRF-3 signaling pathway. IRF-3 phosphorylation is highly induced by wild-type AKT and poorly induced by an AKT mutant, AKT C310A, which is mutated at an inhibitory target site of HQ. We also showed that HQ inhibited IRF-3 phosphorylation by targeting all three AKT isoforms (AKT1, AKT2, and AKT3) in RAW264.7 cells and suppressed IRF-3-mediated luciferase activities induced by AKT in HEK293 cells. Taken together, these results strongly suggest that HQ inhibits the production of a type I IFN, $IFN-{\beta}$, by targeting AKTs in the IRF-3 signaling pathway during macrophage-mediated inflammation.

Induction of Apoptosis in Glioma Cells and Upregulation of Fas Expression Using the Human Interferon-β Gene

  • Guo, Yan;Wang, Gan;Gao, Wen-Wei;Cheng, Shi-Wen;Wang, Ren;Ju, Shi-Ming;Cao, He-Li;Tian, Heng-Li
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.6
    • /
    • pp.2837-2840
    • /
    • 2012
  • We investigated whether IFN-${\beta}$ inhibits the growth of human malignant glioma and induces glioma cell apoptosis using the human IFN-${\beta}$ gene transfected into glioma cells. A eukaryonic expression vector ($pSV2IFN{\beta}$) for IFN-${\beta}$ was transfected into the glioma cell line SHG44 using liposome transfection. Stable transfection and IFN-${\beta}$ expression were confirmed using an enzyme-linked immunosorbent assay (ELISA). Cell apoptosis was also assessed by Hoechst staining and electron microscopy. In vivo experiments were used to establish a SHG44 glioma model in nude mice. Liposomes containing the human IFN-${\beta}$ gene were injected into the SHG44 glioma of nude mice to observe glioma growth and calculate tumor size. Fas expression was evaluated using immunohistochemistry. The IFN-${\beta}$ gene was successfully transfected and expressed in the SHG44 glioma cells in vitro. A significant difference in the number of apoptotic cells was observed between transfected and non-transfected cells. Glioma growth in nude mice was inhibited in vivo, with significant induction of apoptosis. Fas expression was also elevated. The IFN-${\beta}$ gene induces apoptosis in glioma cells, possibly through upregulation of Fas. The IFN-${\beta}$ gene modulation in the Fas pathway and apoptosis in glioma cells may be important for the treatment of gliomas.

Suppression of the TRIF-Dependent Signaling Pathway of Toll-Like Receptors by Isoliquiritigenin in RAW264.7 Macrophages

  • Park, Se-Jeong;Song, Ho-Yeon;Youn, Hyung-Sun
    • Molecules and Cells
    • /
    • v.28 no.4
    • /
    • pp.365-368
    • /
    • 2009
  • Toll-like receptors (TLRs) play an important role in host defense by sensing invading microbial pathogens and initiating innate immune responses. The stimulation of TLRs by microbial components triggers the activation of myeloid differential factor 88 (MyD88)- and toll-interleukin-1 receptor domain-containing adapter inducing interferon-${\beta}$ (TRIF)-dependent downstream signaling pathways. Isoliquiritigenin (ILG), an active ingredient of Licorice, has been used for centuries to treat many chronic diseases. ILG inhibits the MyD88-dependent pathway by inhibiting the activity of inhibitor-${\kappa}B$ kinase. However, it is not known whether ILG inhibits the TRIF-dependent pathway. To evaluate the therapeutic potential of ILG, we examined its effect on signal transduction via the TRIF-dependent pathway of TLRs induced by several agonists. ILG inhibited nuclear factor-${\kappa}B$ and interferon regulatory factor 3 activation induced by lipopolysaccharide or polyinosinic-polycytidylic acid. ILG inhibited the lipopolysaccharide-induced phosphorylation of interferon regulatory factor 3 as well as interferon-inducible genes such as interferon inducible protein-10, and regulated activation of normal T-cell expressed and secreted (RANTES). These results suggest that ILG can modulate TRIF-dependent signaling pathways of TLRs, leading to decreased inflammatory gene expression.

Differential Modulatory Effects of Cholera Toxin and Pertussis Toxin on Pain Behavior Induced by TNF-${\alpha}$, Interleukin-1${\beta}$ and Interferon-${\gamma}$ Injected Intrathecally

  • Kwon, Min-Soo;Shim, Eon-Jeong;Seo, Young-Jun;Choi, Seong-Soo;Lee, Jin-Young;Lee, Han-Kyu;Suh, Hong-Won
    • Archives of Pharmacal Research
    • /
    • v.28 no.5
    • /
    • pp.582-586
    • /
    • 2005
  • The present study was designed to characterize the possible roles of spinally located cholera toxin (CTX)- and pertussis toxin (PTX)-sensitive G-proteins in pro- inflammatory cy tokine induced pain behaviors. Intrathecal injection of tumor necrosis factor-a (TNF-${\alpha}$; 100 pg), interleukin-1${\beta}$ (IL-1${\beta}$ 100 pg) and interferon-${\gamma}$ (INF-${\gamma}$; 100 pg) showed pain behavior. Intrathecal pretreatment with CTX (0.05, 0.1 and 0.5 mg) attenuated pain behavior induced by TNF-${\alpha}$ and INF-${\gamma}$ administered intrathecally. But intrathecal pretreatment with CTX (0.05, 0.1 and 0.5${\mu}g$) did not attenuate pain behavior induced by IL-1${\beta}$. On the other hand, intrathecal pretreatment with PTX further increased the pain behavior induced by TNF-${\alpha}$ and IL-1${\beta}$ administered intrathecally, especially at the dose of 0.5 ${\mu}g$. But intrathecal pretreatment with PTX did not affect pain behavior induced by INF-${\gamma}$. Our results suggest that, at the spinal cord level, CTX- and PTX-sensitive G-proteins appear to play important roles in modulating pain behavior induced by pro-inflammatory cytokines administered spinally. Furthermore, TNF-${\alpha}$, IL-1${\beta}$ arid INF-${\gamma}$ administered spinally appear to produce pain behavior by different mechanisms.

Anti-inflammatory Effects of Omisodokeum (오미소독음(五味消毒飮)의 항염효과(抗炎效果) 및 기전(機轉)에 관(關)한 실험적연구(實驗的硏究))

  • Seo, Yun-Jung;Kim, Song-Baeg;Cho, Han-Baek;Choe, Chang-Min;Lee, Soon-Yee
    • The Journal of Korean Obstetrics and Gynecology
    • /
    • v.21 no.1
    • /
    • pp.39-54
    • /
    • 2008
  • Purpose: The purpose of this study was to investigate the anti-inflammatory effects of the water extract of Omisodokeum (OMSDE) on peritoneal macrophages, Methods: To verify the anti-inflammatory mechanism of OMSDE, the activation of nuclear $factor-{\kappa}B$ $(NF-{\kappa}B)$ and the phosphorylation of MAPK were examined. Results: The extract of OMSDE suppressed the production of LPS-induced nitric oxide (NO), tumor necrosis factor $(TNF)-{\alpha}$, interleukin $(IL)-1{\beta}$, IL-6 and IL-12 in the macrophages. OMSDE inhibited the degradation of inhibitory ${\kappa}B-{\alpha}$ $(I{\kappa}B-{\alpha})$ and it suppressed the activation of extracellular signal-regulated kinase (ERK 1/2) but didn't inhibit c-Jun N-terminal kinase (JNK) and p38, indicating that OMSDE may inhibit the pro-inflammatory cytokine production process by inhibiting the activation of $NF-{\kappa}B$ and ERK 1/2. Furthermore, OMSDE inhibited the production of interferon $(IFN)-{\beta}$ but didn't inhibit of $IFN-{\alpha}$ in the LPS-stimulated macrophages through the down-regulation of interferon regulatory factor (IRF)-1 and IRF-7. The Oral administration of OMSDE inhibited LPS-induced endotoxin shock and the production of $TNF-{\alpha}$ in serum but didn't inhibit of $IL-1{\beta}$ and IL-6. Conclusion: These results suggest that OMSDE may be effective in the prevention and treatment of inflammatory diseases.

  • PDF